
Computational and Structural Biotechnology Journal 20 (2022) 5661–5671
journal homepage: www.elsevier .com/locate /csbj
Review
Modeling signaling pathways in biology with MaBoSS: From one single
cell to a dynamic population of heterogeneous interacting cells
https://doi.org/10.1016/j.csbj.2022.10.003
2001-0370/� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding authors.
E-mail addresses: laurence.calzone@curie.fr (L. Calzone), gautier.stoll@upmc.fr (G. Stoll).
Laurence Calzone a,b,c,⇑, Vincent Noël a,b,c, Emmanuel Barillot a,b,c, Guido Kroemer d,e,f, Gautier Stoll d,e,⇑
a Institut Curie, PSL Research University, F-75005 Paris, France
b INSERM, U900, F-75005 Paris, France
cMINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
dCentre de Recherche des Cordeliers, Equipe labellisé par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France,
Paris, France
eMetabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
f Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Europén Georges Pompidou, AP-HP, Paris, France

a r t i c l e i n f o a b s t r a c t
Article history:
Received 5 July 2022
Received in revised form 30 September
2022
Accepted 2 October 2022
Available online 7 October 2022

Keywords:
Stochastic modeling
Cancer
Population dynamics
Boolean approach
As a result of the development of experimental technologies and the accumulation of data, biological and
molecular processes can be described as complex networks of signaling pathways. These networks are
often directed and signed, where nodes represent entities (genes/proteins) and arrows interactions.
They are translated into mathematical models by adding a dynamic layer onto them. Such mathematical
models help to understand and interpret non-intuitive experimental observations and to anticipate the
response to external interventions such as drug effects on phenotypes. Several frameworks for modeling
signaling pathways exist. The choice of the appropriate framework is often driven by the experimental
context. In this review, we present MaBoSS, a tool based on Boolean modeling using a continuous time
approach, which predicts time-dependent probabilities of entities in different biological contexts.
MaBoSS was initially built to model the intracellular signaling in non-interacting homogeneous cell pop-
ulations. MaBoSS was then adapted to model heterogeneous cell populations (EnsembleMaBoSS) by con-
sidering families of models rather than a unique model. To account for more complex questions, MaBoSS
was extended to simulate dynamical interacting populations (UPMaBoSS), with a precise spatial distribu-
tion (PhysiBoSS). To illustrate all these levels of description, we show how each of these tools can be used
with a running example of a simple model of cell fate decisions. Finally, we present practical applications
to cancer biology and studies of the immune response.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

With the advent of experimental technologies, the amount of
data and knowledge accumulated over the years and the variety
of studies have offered the possibility to describe molecular pro-
cesses with great detail highlighting the complexity of the pro-
cesses that are deregulated in various diseases. Some of the
newest experimental devices facilitate the identification of gene
or protein expression, number of molecules, cell types, or both
the intra- and extracellular location of biological entities. Some
examples include transcriptomics or proteomics and single-cell
RNA-sequencing, spatial transcriptomics, flow cytometry, etc. [1]
gathering and integrating multilevel understanding of the studied
processes.

One way to represent knowledge is to recapitulate the acquired
information in the form of networks bringing into light some sig-
naling or metabolic pathway crosstalks in the context of gene or
protein expression data. Many pathway databases with data
extracted from the literature, and manually curated, exist and
can be used as a source to infer a specific type of networks from
a list of genes [2–6]. A real community effort is conducted to create
the networks in standard format in order to ensure their readabil-
ity, their classification, their homogeneity, their exchange and their
analysis by making them understandable to machines (Systems
Biology Graphical Notations, SBGN [7]). Many of these databases
have joined this effort and provide the networks in one of the stan-
dard formats.

Most pathway databases include annotations about the nature
of the interactions, where they take place, in which cell type and
for which types of experimental conditions the data were gener-
ated. Nonetheless, one issue when constructing these networks is
that they can very easily reach a large dimension with a high num-
ber of nodes and numerous (sometimes heterogeneous types of)
interactions on which it becomes more and more difficult to reason
intuitively.

One solution to overcome this difficulty is to study the dynamic
properties of these networks. When choosing an appropriate math-
ematical formalism, the static network shows dynamic properties
and more formal studies can be performed. By means of mathe-
matical models, it becomes then possible to predict behaviors of
biological processes in various conditions. It is important to note,
though, that a model is not a strict representation of reality. Its
purpose is to extract and abstract the essential molecular knowl-
edge in its sleekest and simplest form, by making some strong
assumptions and approximations, and converting physical situa-
tions into mathematical terms.

The use of mathematical models to describe biological observa-
tions is not new and has been applied for decades in biology with
very famous models such as the Hodgkin–Huxley model of action
potentials in neurons in 1952 [8], or the follow-up models of Denis
Noble of the heart from 1962 on [9]. In cellular biology, the first
models of cell cycle exhibiting oscillatory behaviors were pub-
lished in the 90s [10–12]. With a simple mathematical description
of the known biology, they proved that the dynamical properties of
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the cell cycle could be reproduced and challenged with a minimal
number of variables. If the current models of cellular and molecu-
lar biology are based on these ideas, their size has significantly
increased because of the possibilities that computational tech-
niques offer today with optimized codes and high performance
computing technologies.

The model that describes crosstalks between signaling path-
ways and studies cell fate decision in response to the activation
of receptors focuses on one cell or, depending on the formalism,
on a population of identical cells with the same molecular profile.
These pathways can be activated by intracellular signals and extra-
cellular stimuli, such as a stressor or the presence of extracellular
entities, and trigger a cascade of events ultimately leading to the
transcription of important genes of the cell cycle, cell death or cell
phenotypes, linking an extracellular signal to a phenotype through
a network. The most common formalisms for such models are
based on ordinary differential equations (ODEs) that allow follow-
ing the concentration of the molecular entities participating in the
processes over time. In this context, the initial conditions of the
model are fixed and represent the status of the cell and its environ-
ment at a particular time. These initial inputs can be varied,
though, to show other environmental conditions. The difficulty of
this formalism is to find the proper parameters that reproduce
the observed behaviors, knowing that these parameters are diffi-
cult to identify in real life experiments. A more coarse-grain
approach consists in translating the information into a logical
model where variables are discrete and there are no parameters
to fit. The approach is simpler and more versatile but the conclu-
sions that can be drawn from this type of models are not quantita-
tive and not all questions can be answered (dosage of drug
treatments, precise timing of events, etc.).

We present, here, an alternative approach for mathematical
modeling of these signaling pathways and its implementation in
a software, MaBoSS (Markovian Boolean Stochastic Simulator)
[13,14]. The main hypothesis of MaBoSS relies on the definition
of genes or proteins’ activities by discrete levels, within a continu-
ous time dependency framework. Initially, MaBoSS was designed
to model signaling pathways in a single cell type, but over time
and to answer the evolution of the biological questions that were
formulated, MaBoSS was extended to tackle a broader biological
context, including heterogeneous and dynamic cell populations.
There remain limitations of MaBoSS, though. Among them, we
can list the possibility to address spatial description as it is
understood in developmental biology, or to address questions
related to precise biochemical mechanisms as it is the case for
pharmacodynamics / pharmacokinetics perspectives or for meta-
bolism. For these types of applications, other approaches are more
appropriate than MaBoSS and related tools.

In this review, we introduce MaBoSS tool suite that consists of a
primary tool, MaBoSS, and a set of extensions: EnsembleMaBoSS,
UPMaBoSS and PhysiBoSS. We first define MaBoSS grammar and
applications. We then present its extensions that tackle more com-
plex levels of descriptions: EnsembleMaBoSS for handling families
of models, UPMaBoSS for interacting and dynamic cell populations



Fig. 1. MaBoSS tool suite: MaBoSS, EnsembleMaBoSS, UPMaBoSS and PhysiBoSS.

L. Calzone, V. Noël, E. Barillot et al. Computational and Structural Biotechnology Journal 20 (2022) 5661–5671
and PhysiBoSS for a dynamic spatially-organized population of
heterogeneous cells. Finally, we illustrate the tools with some prac-
tical examples in cancer and immune biology.
2. Rationale for a new modeling framework

Over the last 20 years, a lot of research effort has been put into
building comprehensive predictive models such as the digital
twins [15,16] or virtual objects for clinical purposes (cf. the virtual
liver [17], the virtual heart [18,19], the virtual tumor [20], or the
virtual patient [21]). Some real challenges were also met when
developing mathematical models of the whole cell, capturing
molecular species, physical compartments, genetic alterations,
and metabolic variations, with a mechanistic description to allow
the formulation of predictions [22–24]. In the whole cell modeling
approach, the construction of these comprehensive models has
been addressed with hybrid modeling to account for multiple
scales, different timing, and various types of data to integrate.

The aim of these models is not only to reproduce experimental
observations but also to anticipate the system’s evolution in time
and space when placed in different contexts and cellular condi-
tions. These cell decisions depend on how molecules interact, dif-
fuse and fluctuate in an environment without ignoring the fact
that these processes can occur with a certain degree of random-
ness. The mathematical formalisms to represent these processes
can be chosen according to the desired level of simplification of
such random and stochastic events. In biological applications, they
can range from pure statistical approaches [25]) to very complex
models spanning all scales [26], frommolecular interactions (genes
and proteins’ dynamics with ODEs, rule-based or logical models
[27,28]), cell evolution (focused on cell fate, such as proliferation
or death with cellular automata [29]), tissue evolution and the
interaction with the environment (with agent-based modeling
framework [30–32]), organ specificity (with mechanical considera-
tions [33,34]), to the patient itself, as mentioned for the virtual
patient.

Over the past decade, our contribution towards more compre-
hensive and complex approaches has been extended in several
directions. We first started modeling the signaling pathways of a
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single cell with MaBoSS (https://github.com/sysbio-curie/
MaBoSS-env-2.0) [13,14] and WebMaBoSS, a user-friendly web
interface (https://github.com/sysbio-curie/WebMaBoSS) [35]. We
then explored the possibility to consider families of resembling
models that fit biological constraints with the simulation of
ensembles of MaBoSS models [36]. We further allowed the cells
to interact with each other and other cell types, die and divide with
UPMaBoSS (https://github.com/sysbio-curie/UPMaBoSS-docker)
[37]. Finally, we included spatial considerations in the interactions
among cells and cell types and with the microenvironment with
PhysiBoSS (https://github.com/PhysiBoSS/PhysiBoSS) [30] (Fig. 1).
3. Logical formalism

The biological knowledge spread in different sources can be
gathered and recapitulated in the form of a network, where nodes
represent variables and arrows account for the interactions
between nodes. Variables refer to genes and proteins but can also
account for protein complexes, metabolites, cell types and even
cell position. As already mentioned, the network can take several
forms [7]. The choice for the most appropriate type of networks
and the corresponding mathematical formalism will depend on:
(1) which mathematical objects are associated to variables
(nodes): discrete numbers, continuous numbers, vector of num-
bers, etc.; (2) how the interactions are interpreted: are they chem-
ical or physical interactions, influences, correlations, etc.; (3) what
the parameters of the model represent: chemical events (e.g., syn-
thesis, degradation, phosphorylation, transport), affinity (e.g.,
ligand-receptor interactions, cooperation or competition between
two ligands on a receptor), or initial conditions (e.g., initial concen-
tration or amount of species, initial extracellular status).

Our approach is based on the construction of an influence (or
regulatory) network, where nodes are connected by directed and
signed arrows representing influences of one node onto another
(Fig. 2A), and the corresponding mathematical model uses a logical
formalism where variables can take two values 0 (for absent or
inactive and written as �) and 1 (for present or active and written
as +) (Fig. 2B). The variables are updated according to the status of
the input nodes linked by logical connectors OR, AND, and NOT

https://github.com/sysbio-curie/MaBoSS-env-2.0
https://github.com/sysbio-curie/MaBoSS-env-2.0
https://github.com/sysbio-curie/WebMaBoSS
https://github.com/sysbio-curie/UPMaBoSS-docker
https://github.com/PhysiBoSS/PhysiBoSS


Fig. 2. Logical formalism: (A) Three representations of the logical model: the regulatory network depicting the influence of a node on the others, the logical rule for C where A
and B are inputs, the truth table; (B) A graph recapitulating the possible transitions from one model state to another, with four stable states (or fixed points): (A�,B�,C+), (A+,
B�,C+), (A+,B+,C+), (A�,B+,C�) where A� denotes its absence (or value = 0) and A+ its presence (or value = 1). A model state is a vector of all nodes of the model informing on
their status at each step.

Fig. 3. Logical modeling framework of MaBoSS: (A) transition rates for node activation and inhibition, which can be read as follows: for C to be activated (from C� to C+), if
the rule ‘‘A or not B” is verified, then the rate of activation is 1; for C to be inhibited (from C+ to C�), if the rule ‘‘not A and B”, then the rate of inhibition is 2; (B) a set of initial
conditions per model state. There are two possible outputs of MaBoSS simulations in the form of (C) time-dependent model state probabilities for (A+,B�,C+) in orange and (A
+,B�,C�) in purple only, and (D) a pie chart representing the model states when the system has reached its asymptotic solution (it corresponds to the model states of the last
point of the simulations in C).
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(Fig. 2A). For instance, a gene C can be activated by a gene A and
inactivated by gene B. The activation rule for C can be written as
follows: C = (A OR (NOT B)), which means that C will go from �
to + when either A is present or B is absent. When the rule is not
5664
verified, C will be set to 0 (C�). We provide a slightly more complex
example of a model in the Supplementary materials, written and
analyzed in MaBoSS with a positive and a negative feedback loop,
leading to one stable state, and a simulation of single mutants.
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It is important to note that the writing of the logical rules may
not be unique and this issue is common to all logical tools. The
rules should reflect the knowledge that can be extracted from pub-
lications or experimental observations. In the case that a node has
two inputs, i.e., a gene can be activated by two different transcrip-
tion factors, it can reflect two scenarios. If the two transcription
factors were identified in two different publications, they can be
connected with an OR gate; if the two transcription factors form
a complex (e.g., EWS/FLI1), then they are connected by an AND
connector. If no information is provided, we usually opt for an
OR connector.

A recent review describes in great detail the formalism, the
modes of updating schemes and the available modeling tools [38].
4. Qualitative modeling with MaBoSS and its extensions

MaBoSS primary tool is a C++ software. It requires a .bnd file
(Boolean Network Descriptor) and a .cfg file (configuration) as
inputs. These files can be written and edited manually, but very
often, models are constructed with a different software (BoolNet
or GINsim), imported, handled, modified and simulated within a
python interface called PyMaBoSS ( https://github.com/colomoto/
pyMaBoSS) developed by the CoLoMoTo consortium [39]. All the
model files and the python notebooks used to simulate the models
in this review are provided in the Supplementary material and in
the dedicated GitHub available at https://github.com/sysbio-
curie/MaBoSS-Review/.
Fig. 4. Cell Fate model, network and simulations. (A) Influence network of the cell fate
Non-Apoptotic Cell Death, Apoptosis and Survival, obtained by MaBoSS simulation for
generated and simulated by EnsembleMaBoSS with respect to the model phenotypes in
computed by UPMaBoSS, with one dose of TNF treatment (black curve), and after 48 h, a
coincides with TNF-treated simulations), (E) PhysiBoSS simulation of TNF-treated cells ma
and necrotic cells (in black).
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4.1. MaBoSS

MaBoSS applies the logical formalism within a continuous time
window by applying continuous Markov chains over the Boolean
network.

To the list of logical rules (Fig. 2A) common to many logical
model frameworks, transition rates are associated to each variable
of the model, setting the time it takes for activation (rate_up) and
for inactivation (rate_down) (Fig. 3A). Similarly, some probabilities
can be set for the initial conditions corresponding to the probabil-
ity to be active (1) or inactive (0) at the beginning of a simulation
(Fig. 3B). It is thus possible to follow the probability for a model
state (vector of Boolean values), or for a model variable (gene or
protein of the model), over time until it reaches its asymptotic
solution (Fig. 3C, D). Therefore, a MaBoSS model has a set of param-
eters encompassing rates of transition and initial conditions. The
rates are set to 1 by default. Ideally, these parameters would be
measured experimentally, but in practice, they are often estimated
from various experimental contexts. To cope with the issue of
parameter identification, parameters are often given a value that
represents a proper order of magnitude, that can be evaluated with
a sensitivity analysis.

As a running example, we present a published model of cell fate
decision in response to death receptor activation [40] (Fig. 4A). In
this model, there are three inputs, TNF, FAS and FADD, and three
outputs or read-outs, Survival that is activated by the NFkB
pathway, Apoptosis triggered by caspases, and NonACD for
non-apoptotic cell death corresponding to programmed necrosis,
model (light green arrow represent ligand-receptor interactions), (B) Probability of
wild-type model (top) and ROS knock-down (bottom), (C) PCA plot of the models
the case where TNF is OFF (blue) and TNF is ON (orange), (D) Cell population ratio
second TNF treatment (right curve, with its control in a red dashed line that almost
rked with proliferative cells (in green), apoptotic cells (in red, but rare on the figure)

https://github.com/colomoto/pyMaBoSS
https://github.com/colomoto/pyMaBoSS
https://github.com/sysbio-curie/MaBoSS-Review/
https://github.com/sysbio-curie/MaBoSS-Review/
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also called ‘‘necroptosis”. When none of the phenotypes are active,
the obtained solution is referred to as naive state in the initial pub-
lication and is noted as <nil> in MaBoSS simulations. It corre-
sponds to the case when the genes encoding FAS, TNF or FADD
are OFF, and as a result, none of the signaling pathways can be
activated.

For simplificity, we set FAS to 0 as an initial condition and focus
only on TNF-induced pathway activation. It is initially assumed
that FADD is random (present or not), cIAP and ATP are active
and all other components of the model are inactive. When TNF is
ON, Survival can be activated with a probability of 1.4%, Death with
a probability of 42.8%, the rest corresponding to the naive case (not
shown on the graph). When a gene is mutated (the corresponding
variable is set to 0 or 1 according to the type of mutation), these
probabilities change. For instance, a mutation in ROS-related genes
(overactivation of the node ROS (reactive oxygen species) in the
model) strongly affects the proportion of surviving versus dying
cells to 1.6% and 28.1%, respectively, highlighting the role of ROS-
related genes in cell death (Fig. 4B).

The same simulations can be performed using a user-friendly
web interface, WebMaBoSS [35] available at this address:
https://maboss.curie.fr/webmaboss/). The user, after login in, can
import any model from public databases or from local MaBoSS files
and simulate models without any extensive knowledge of the
software.
4.2. EnsembleMaBoSS

As previously mentioned, when building a Boolean model, some
choices about the logical formulae have to be made: for each node
of the regulatory network, their input nodes are linked by logical
rules (see section on logical formalism) to define the conditions
for updating the value of the corresponding variable. The number
of combinations for these choices can become extremely large,
and as such, the number of possible Boolean models for a regula-
tory graph can become exponential. If some choices are directed
by experimental evidence (when two genes participate in the acti-
vation of a third by complexation, for instance), most of the rules
are not known and these choices can bring an unavoidable bias
to the model. One way to address this issue is to automatically
build a large ensemble of Boolean models using Bonesis [36],
which generates models compatible with a set of constraints. Typ-
ically, these constraints would translate biological observations,
which could consist in a list of fixed points that correspond to dis-
cretized data of cell conditions or known interactions among
proteins.

We developed such an ensemble of models for the example of
Fig. 4A. We used the regulatory graph, as well as constraints on
the reachable phenotypes: models must be able to reproduce Sur-
vival, Apoptosis, NonACD phenotypes and a naive state where none
of the phenotypes are active (written <nil> in the simulations). In
other words, there must be one steady state of the model with each
of these phenotypes that must be reachable. Note that this does
not prevent other phenotypes (for example combinations of phe-
notypes, such as Survival and Apoptosis, which would be identified
as aberrant in this model).

We generated an ensemble of 2000 models compatible with
these constraints using Bonesis. Interestingly, we did not obtain
any aberrant phenotypes in the ensemble, suggesting that the con-
straints present in the regulatory graph are enough to enforce the
mutual inhibition of these phenotypes. We then used principal
component analysis (PCA) to plot the distribution of the probabil-
ities of the fixed points of these models in a 2D space. This allows
us to study the variability of the distribution of fixed points within
the ensemble (Fig. 4C).
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The points in blue show the positions of the steady state distri-
bution of each model, when simulated without the TNF. While the
published model of Fig. 4A exhibits only the naive (<nil>) state in
this context, here we can observe that many models can have com-
pletely different probabilities, just based on an alternative choice
of formulae. A subset of models clearly shows that the Survival
phenotype can be favored depending on the rules. The points in
orange represent the distribution of steady states of models when
simulated with TNF, and show a shift away from the <nil> state,
with variability in the distribution of the active phenotypes (Apop-
tosis, NonACD, Survival).

With these results, we are able to refine our selection of models
in our ensemble, to fit more closely to experimental data. For
example, if an experiment shows that without TNF, no cells
become resistant nor die, whereas with TNF 5% of cells become
resistant and 95% die, with these two simulations, we can select
an ensemble of models with these characteristics.

In some cases, clusters of aberrant models can appear, e.g.,
where apoptosis and proliferation occur concomitantly in one fixed
point. These models could be dismissed by adding some con-
straints on the selection of models or by translating different con-
ditions of the wild type or of reported mutants into a more
complete list of constraints using MaBoSS_test [41]. This procedure
reduces the list of possible models to those that are able to pass all
the tests.

4.3. UPMaBoSS

MaBoSS simulates a population of asynchronous and indepen-
dent cells which do not communicate. UPMaBoSS was developed
not only to account for cell–cell interactions but also to consider
the fact that cells die and divide throughout the time of the simu-
lations. This dynamic feature of the model affects the final propor-
tion of living cells and may better match experimental
observations. Moreover, UPMaBoSS is able to simultaneously sim-
ulate a mixture of different cell types that have their own signaling
pathways and that communicate through a ligand-receptor
interaction.

In UPMaBoSS, there are no spatial considerations as every cell
can interact with each other no matter where they are situated.
It is possible to account for simple spatial position by adding nodes
that describe spatial states. For instance, for a tumor model, a node
‘‘tumor” can be active only if the cell is inside the tumor and not in
its periphery, both situations will be determined by different initial
conditions.

As it is the case in MaBoSS, UPMaBoSS provides probabilities of
model states over time. In addition, UPMaBoSS produces a time-
dependent population ratio, which corresponds to the relative
change in the population size. Note that the population size is
set to the value 1 at time 0, by default, but can be modified by
the modeler to fit experimental data. The size of a given cell type
population, where the cell type can be represented by a node in
the network, e.g., Type_1, is the product of three numbers: 1) the
population ratio, 2) the probability of Type_1, and 3) the initial pop-
ulation size.

The cell fate model has been adapted to account for cell–cell
interactions by adding an extra-cellular influence (light green
arrow in Fig. 4A), a division node and a death node. The TNF treat-
ment is modeled as TNF being ON (present) at the beginning of the
simulation. The activity of TNF is further maintained by the para-
crine loop NFjB ! TNF creating a feedback loop that favors death
(as shown in [37]). Nonetheless, following the treatment, a hetero-
geneous population of cells is obtained as a proportion of cells is
killed by both apoptosis and necrosis, and another one proliferates
through NFjB activation. When a second treatment is imposed
48 h after the first one, a resistance mechanism against TNF treat-

https://maboss.curie.fr/webmaboss/


Fig. 5. Simulation of spheroids. (A) Simulations of homogeneous population of wild type cells, without TNF treatment (red), and with TNF treatment (green). (B) Population
increase after 24 h of treatment for heterogeneous populations of wild type cells (blue) and IKK+ and cFLIP+ mutated cells (orange), according to the percentage of mutated
cells in the global population (green).
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ment can be observed. Indeed, if one dose of TNF kills 80% of the
cells, the second dose is unable to kill the remaining cells and is
equivalent to no treatment at all (Fig. 4D). Note that this resistance
mechanism is not due to a genetic selection because the treatment
is simulated on the wild type model. Other responses can be
observed in silico in a system in which mutations are introduced
(see [37]).
4.4. PhysiBoSS

When spatial considerations are needed to address the biologi-
cal question, the model must be adapted in a new framework. One
natural choice is to use an agent-based modeling approach such as
PhysiCell [31] or CompuCell3D [42], where agents (cells in our
case) have a position, can move and interact with each other and
the environment. The cell environment can be described by a gra-
dient of species (e.g., of oxygen) which can diffuse and be taken up
or secreted by cells. What is lacking in these tools, though, is the
intracellular description of these agents. PhysiBoSS [30,43] was
developed to address this aspect, by allowing the representation
of signaling pathways within each cell of PhysiCell using a Boolean
model. The input nodes of the Boolean models are activated
according to signals from PhysiCell, integrating the various exter-
nal environmental conditions (signal from neighboring cells, pres-
ence of chemical signals, etc.). Cell phenotypes are triggered
according to output nodes of the intracellular model, which leads
to a response in the environment. MaBoSS is especially suited to
perform this task as it simulates Boolean networks in continuous
time, allowing to integrate MaBoSS notion of time within PhysiCell
notion of time. Moreover, the stochasticity inherent of MaBoSS
simulations allows to represent heterogeneity in cell response.

The cell fate decision model is a good example of a MaBoSS
model that can be used in PhysiBoSS: two of the input nodes
(TNF, Fas) can be directly linked to the presence of these molecules
in the proximity of the cells, and its three output nodes can trigger
behaviors in PhysiCell: Survival can trigger proliferation, Apoptosis
and NonACD can trigger cell death. Such a PhysiBoSS model was
developed in [30] to study TNF treatment in multi-cell spheroids
(Fig. 4E). A link between the oxygen present around the cell and
the node NonACD was also added to this model to account for oxy-
gen dynamics, and reproduce the necrotic cells present at the core
of the tumor. When stimulated with TNF, most of the peripheral
cells undergo apoptosis. However, a small part of these cells acti-
vate NFjB and become resistant to TNF. After 24 h of treatment,
most of the cells are resistant and the lethal effect of TNF vanishes
(Fig. 5A).

This type of frameworks facilitates the simulations of clones in a
tumor and the impact of treatments on a heterogeneous cell pop-
ulation. Clones are subsets of cells with similar sets of mutations.
In the initial publication, we explored the effect of the treatment
on the population that carried 25% of a clone with cFLIP and IKK
overexpressed. These mutations were selected because they
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showed resistance in the MaBoSS simulation of a cell. We studied
the impact of the size of two populations, one mutated and one
wild type, on the growth rate of the population. We were able to
predict that increasing the size of the clonal population would
globally increase the growth rate of the whole population (from
130% increase with 0% mutated cells to 180% increase with 100%
mutated cells). However, when looking at each clonal population
particularly, their growth rate would be slightly decreased by the
introduction of a more resistant clone, competing with them for
access to oxygen (Fig. 5B).

While this type of models is a lot more complex and computa-
tionally demanding, it allows the exploration of many aspects of
the influence of the microenvironment on the individual cell fate
decision process and its spatial characteristics. In the context of
studying cancer and its microenvironment, requiring the simula-
tion of cellular migration through the extracellular matrix, struc-
tures of heterogeneous populations inside a tumor, or the action
of the immune system, we believe this framework can provide
unique insights.
4.5. Applications in cancer and immune biology

The logical approach has already been successfully applied to
cancer biology [44–47] or immune biology [48–51] and has pro-
vided significant insights on drug identification [52,53,28].
4.5.1. Application of MaBoSS in cancer
Cancer is often referred to as a network or systems biology dis-

ease, with diverse and unexpected responses to chemotherapeutic
treatments. Each cancer could be represented as a network modi-
fied by specific genetic and epigenetic alterations that are found
in individual patients, leading to different possible outputs [54–
56]. Not two patients will have the same molecular profiles and,
as a consequence, will not respond to therapy in the same way.
This heterogeneity between patients can be expanded to the
intra-patient heterogeneity where the primary and the secondary
tumors differ in their mutational profile. Similarly, inside a tumor,
there might exist multiple clones with clusters of cells with similar
(although not identical) genetic alterations. Many reviews and
publications have addressed these aspects of heterogeneity [57].
When modeling tumorigenesis, these challenges should be tackled.

The stochasticity of MaBoSS tool suite can partly solve this
question: with MaBoSS, each trajectory is a cell and each cell can
follow its own path. It is possible to simulate a certain percentage
of cells with different sets of mutations, reproducing to a certain
extent the clonality reported in the tumor. We developed further
a methodology to integrate omics data into these models and cre-
ate a model per patient with different mutations and transition
rates inferred from discretized data (mutations of copy number
variation data), and continuous data (RNAseq or proteomics data),
respectively [58]. As we already showed, PhysiBoSS is particularly
suited for modeling and simulating clonality and the impact that a
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treatment may have on the composition and proportion of differ-
ent clones inside a tumor. In [30], we showed that two alterations
of the NFjB pathway in the cell fate model (Fig. 5A) would lead to
tumor growth with or without a TNF treatment, suggesting that
patients with these mutations would not respond well to the treat-
ment. The experiment to show this effect is not straightforward,
though. Assessing the impact of this double mutation in patients
by computing the correlation between their co-occurrence and
the response to a TNF-related treatment could confirm or infirm
the model observations, provided that this type of data is available.
In 2015, a model of bladder cancer was constructed to explain the
co-occurrence and the mutual exclusivity in a subset of gene alter-
ations that had been derived from a statistical analysis[44]. In this
example, the model was able to support some results of the statis-
tical analysis by providing a mechanistic explanation of the find-
ings but with this model, a co-occurrence could be refuted. In
that case, we showed that a third alteration was needed for high
grade tumors and these triplets of alterations were confirmed in
data obtained from patients with severe disease.

Depending on the Boolean model and the genes included in the
signaling pathways, specific questions can be studied with their
own in silico experiments. Some models have focused on the inter-
play between signaling pathways with a generic approach [47,59],
while other focused on specific cancers: breast [46], colon [60–63],
bladder [44], gastric [64], or prostate cancer [28]. For each of these
studies, some analyses could be made on the search for drug syn-
ergies, mutation associations, personalized treatments, and the
consequences of combinations of mutations on the phenotypes,
showing the wide panels of questions that can be explored with
these models. One recent model of prostate cancer helped priori-
tize some drug targets for a sensitive cell line that were further val-
idated experimentally. The model was personalized to the prostate
cell line, LNCaP, using the methodology PROFILE [58], and drugs
that significantly decreased proliferation and increased apoptosis
were selected. Two of them were tested experimentally and their
effects on cell viability were confirmed. The experimental valida-
tion of the prediction of the models is not always easy as such pre-
dictions are often made on cancer patients with heterogeneous
profiles. Thus, they cannot be straightforwardly translated into
an experiment. In these cases, the model can still be used as a
strong support for reasoning.

4.5.2. Applications of MaBoSS and UPMaBoSS in immune response
studies

A considerable effort has been invested into the modeling of
immune response in the context of cancer but also to study and
better understand autoimmune diseases. Some models have been
published that explore T cell differentiation and clonal expansion
[48,65–71], macrophage polarization [72–74], dendritic cell differ-
entiation [75] and some have simulated the effect of checkpoint
inhibitors for targeted cancer treatments [76,51]. Autoimmune dis-
orders have also been characterized to better understand the sig-
naling pathways that could be responsible for the diseases.
Among them, models of Rheumatoid arthritis (RA) [77,78] or of
psoriasis [79] have provided insights into the mechanisms at stake.

Most of these models focus on individual cell types and their
intracellular regulation. However, the interactions among distinct
cell types might provide additional insights and understanding
on how to attack and revert the altered phenotypes. With UpMa-
BoSS, we constructed a model including several cell types and
interacting through ligand-receptor dynamics. The population
model described the immunogenic cell death (ICD): this type of cell
death, induced in particular by some anti-cancer treatments, is
able to recruit the immune system through the release of danger
signals (DAMPs) by dying cells. ICD amplifies the killing effect of
ICD inducers, through a complex mechanism resulting in cytotoxic
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effect of activated T-cells. The mathematical model includes tumor
cells, dendritic cells and different T-cell subsets. It is able to repro-
duce the amplification of chemotherapy by anticancer immune
responses. The model provides a tool to select some proteins as
potential targets to enhance ICD and could also be used as a basis
to explore the reasons why some chemotherapeutic drugs are good
ICD inducers (e.g., oxaliplatin, mitoxantrone) and some are not
(e.g., cisplatin).
4.6. Relevance and limitations of MaBoSS modeling approach

The logical framework is mainly chosen for its simplicity and
versatility over more complex approaches such as chemical kinetic
models. Even though the analyses and the predictions may appear
limited compared to continuous models, the MaBoSS approach is
highly appropriate in several situations. The first one is when a
high number of genes (i.e., nodes) are required to answer the ques-
tion. The lack of parameters is an advantage in this case. The sec-
ond situation is when pairwise conditions are compared, e.g.,
wild type vs. mutation of a gene. In this case, the difference of
probabilities to reach a phenotype or to activate a node (gene) in
these two conditions can inform on the downstream impact of
the mutation. In our example of the cell fate model, ROS-related
genes reduced the non-apoptotic cell death phenotype to 0 com-
pared to wild type. This type of effects could be observed experi-
mentally with an increase of surviving cells after activation of an
oncogene, or as the result of a statistical analysis which identified
some genes as significantly differentially expressed in two experi-
ments. Another interesting situation is related to population sizes:
UPMaBoSS can compute the proportions of sub-populations
defined by over/under-expression of surface markers, such as
CD4 or CD8 markers for T cells, and this output could be compared
to flow cytometry data if available.

As a general comment, the comparison between logical model
simulations and data outputs is not straightforward and remains
challenging (see tentative table in the Supplementary material
summarizing some possible correspondence).

Finally, on top of the technical difficulties of writing the logical
rules, the choice of the parameters (transition rates) can be men-
tioned. By default, the rates are set to 1. If they are modified, they
can represent the inverse of the half-life of a protein, the inverse of
the length of a process, or can simply separate the fast and slow
processes by choosing rough ranges of parameter values.
5. Conclusion

Appropriate tools of the MaBoSS tool suite can address a wide
variety of questions, in particular related to cancer and immune-
related diseases. A MaBoSS mathematical model is based on dis-
crete levels of entities (genes, proteins, cell types, compartments)
and predicts time-dependent state probabilities from a user-
defined initial condition. There are a number of documents that
facilitate the construction of models with MaBoSS and its exten-
sions, including online presentations of the tools, training materi-
als, dedicated GitHub repositories and tutorials. In addition, all
the published models using MaBoSS modeling tools have accompa-
nying Jupyter notebooks to reproduce published results. These
materials can all be easily reused with new models and are gath-
ered in a GitHub repository: https://github.com/sysbio-curie/
MaBoSS-Review.

Therefore, MaBoSS modeling framework is particularly suited
when signaling pathways are described as a directed influence net-
work (a set of logical influences between entities), with a limited
number of cell types. MaBoSS evolved over time to answer new
questions that emerged with new data in order to represent more

https://github.com/sysbio-curie/MaBoSS-Review
https://github.com/sysbio-curie/MaBoSS-Review
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complex models: from a single cell approach with MaBoSS tool, to
a more heterogeneous tissue within EnsembleMaBoSS, to a dynam-
ical heterogeneous population of interacting cells, and finally to a
full spatial modeling approach with PhysiBoSS.

In a given biological context, other frameworks than MaBoSS
may be better fit to address a question, or could be included in a
more thorough study incorporating different data types. For this
purpose, MaBoSS is part of the CoLoMoTo consortium [39] that
allows the exchange, the composition and the reuse of logical mod-
els and tools. MaBoSS can be used in a routine with tools that per-
form mutant analyses (cf. PINT [80]) or more formal stable state
analyses [81–83].

The most efficient studies should be conducted with the most
appropriate mathematical formalism, which may require, depend-
ing on the data and on the type of questions, to simulate a model
with partial or ordinary differential equations to suggest ranges
of drug doses or frequencies of treatments. In this case, MaBoSS
models can be seen a first approximation of more quantitative
analyses.
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