
Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo‑
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Šmelko et al. BMC Bioinformatics (2024) 25:199
https://doi.org/10.1186/s12859-024-05815-5

BMC Bioinformatics

Maboss for HPC environments:
implementations of the continuous time
Boolean model simulator for large CPU clusters
and GPU accelerators
Adam Šmelko1, Miroslav Kratochvíl2, Emmanuel Barillot3,4,5 and Vincent Noël3,4,5*

Abstract

Background: Computational models in systems biology are becoming more impor‑
tant with the advancement of experimental techniques to query the mechanistic
details responsible for leading to phenotypes of interest. In particular, Boolean mod‑
els are well fit to describe the complexity of signaling networks while being simple
enough to scale to a very large number of components. With the advance of Boolean
model inference techniques, the field is transforming from an artisanal way of build‑
ing models of moderate size to a more automatized one, leading to very large models.
In this context, adapting the simulation software for such increases in complexity
is crucial.

Results: We present two new developments in the continuous time Boolean simula‑
tors: MaBoSS.MPI, a parallel implementation of MaBoSS which can exploit the com‑
putational power of very large CPU clusters, and MaBoSS.GPU, which can use GPU
accelerators to perform these simulations.

Conclusion: These implementations enable simulation and exploration of the behav‑
ior of very large models, thus becoming a valuable analysis tool for the systems biology
community.

Keywords: Computational biology, High performance computing, Boolean models

Introduction
Biological systems are large and complex, and understanding their internal behavior
remains critical for designing new therapies for complex diseases such as cancer. A cru-
cial approach in this endeavor is building computational models from existing knowl-
edge and analyzing them to find intervention points and to predict the efficacy of new
treatments [1, 2]. Many different frameworks have been used to describe biological sys-
tems, from quantitative systems of differential equations to more qualitative approaches
such as Boolean models [3]. While the former seems more adapted to represent complex
behavior, such as non-linear dependencies, the latter is being increasingly used because

*Correspondence:
vincent.noel@curie.fr

1 Department of Distributed
and Dependable Systems,
Charles University, Prague, Czech
Republic
2 Luxembourg Centre
for Systems Biomedicine,
University of Luxembourg,
Esch‑sur‑Alzette, Luxembourg
3 Institut Curie, Université PSL,
75005 Paris, France
4 INSERM, U900, 75005 Paris,
France
5 Mines ParisTech, Université PSL,
75005 Paris, France

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-024-05815-5&domain=pdf

Page 2 of 15Šmelko et al. BMC Bioinformatics (2024) 25:199

of its capability to analyze very large systems. Many Boolean models have been built to
describe biological systems to tackle a variety of problems: from understanding funda-
mental properties of cell cycle [4, 5] to advanced properties of cancer [6–8].

Historically, the task of building Boolean models involved reading an extensive
amount of literature and summarizing it in a list of essential components and their inter-
actions. More recently, database listings of such interactions [9, 10] and experimental
information retrieval techniques on a bigger number of components were subjected to
many advancements. Combined with the design of automatic methods for Boolean for-
mulae inference from the constraints encoded in the knowledge and the experimental
data [11–14], these new developments allows the construction of large Boolean models.
While this effort faces many challenges, we believe it is a promising way to study the
large-scale complexity of biological systems. However, in order to analyze the dynamic
properties of such large Boolean models, we need to develop efficiently scalable simula-
tion tools.

Here, we present adaptations of MaBoSS [15, 16]—a stochastic Boolean simulator that
performs estimations of state probability trajectories based on Gillespie stochastic simu-
lation algorithm [17]—to modern HPC computing architectures, which provide signif-
icant speedups of the computation, thus allowing scrutinization and analysis of much
larger Boolean models. In particular, the problem of properly quantifying low abundant
phenotypes [18] can now be tackled by making more realistic the large number of simu-
lation needed to cover the space of possible trajectories. The main contributions com-
prise two new implementations of MaBoSS:

• MaBoSS.GPU, a GPU-accelerated implementation of MaBoSS, which is designed to
exploit the computational power of massively parallel GPU hardware.

• MaBoSS.MPI, a parallel implementation of MaBoSS which can scale to multinode
environments, such as large CPU clusters.

The source code of the proposed implementations is publicly available at their respective
GitHub repositories.1 We also provide the scripts, presented plots, data and instructions
to reproduce the benchmarks in the replication package.2

To showcase the utility of the new implementations, we performed benchmarking on
both existing models and large-scale synthetic models. As the main results, MaBoSS.
GPU provided over 200× speedup over the current version of MaBoSS on a wide range
of models using contemporary GPU accelerators, and MaBoSS.MPI is capable of almost
linear performance scaling with added HPC resources, allowing similar speedups by uti-
lizing the current HPC infrastructures.

Background
Boolean signaling models

A Boolean signaling model consists of n nodes, which can represent a gene, protein
or an event in a cell. Nodes are either active or inactive, gaining binary values 1 or 0

1 https:// github. com/ sysbio- curie/ MaBoSS. GPU, https:// github. com/ sysbio- curie/ MaBoSS.
2 https:// github. com/ sysbio- curie/ hpcma boss- artif act.

https://github.com/sysbio-curie/MaBoSS.GPU
https://github.com/sysbio-curie/MaBoSS
https://github.com/sysbio-curie/hpcmaboss-artifact

Page 3 of 15Šmelko et al. BMC Bioinformatics (2024) 25:199

respectively. The state of the whole model is represented by a vector S of n binary values
where Si represents the value of the i-th node. We denote the set of all possible states as
S = {0, 1}n ; thus |S| = 2n.

Interactions in the model are described as transitions between two states. A single
state can have multiple transitions to other states with assigned transition probabili-
ties. In turn, a Boolean network is represented as a directed weighted graph G = (S , ρ) ,
where ρ : S × S → [0,∞) is a transition function generating transition rates. These
rates define edge weights of G, which are used to compute the probability of a transition
from state S to S′ in the following way:

For convenience, it holds that

MaBoSS: Markovian Boolean stochastic simulator

MaBoSS simulates the asynchronous update strategy, where only a single node changes
its value in each transition (as opposed to the synchronous update strategy, for which all
nodes that can be updated are updated [15]). Therefore, there is a transition from S to S′
only if it holds that

Consequently, S can have at most n possible transitions. In programming terms, S′ is
obtained by flipping the j-th bit of S.

To determine the possible transition rates, each node follows the Boolean logic
Bi : S → [0,∞) , which determines the expected Poisson-process rate of transitioning to
the other value. If Bi(S) = 0 , then the transition at node i is not allowed in state S. Given
this formalization, the simulation can be also viewed as a continuous-time Markov
process.

The main computational part of the Boolean logic is its binary function f : S → {0, 1} ,
which consists of logical operators (such as and, or, xor, not) with nodes as operands. For
example,

is the binary function for node i, having nodes 2, 3 and 4 as its operands. The binary
function of a node determines the value to which the node can transition. Thus, S can
transition at node i at rate r only if fi(S) = Si . Concisely, Bi is defined as3

(1)P(S → S′) =
ρ(S, S′)

S′′∈S ρ(S, S′′)
.

(2)ρ(S, S′) = 0 ⇐⇒ there is no transition from S to S′.

(3)
Sj = S′j for a given j

Si = S′i for i = j.

(4)fi(S) = (S2 ∧ S3) ∨ S4

3 Generally, Bi can be defined using a pair of binary formulas [15]: one used when a node is active and one when it is
inactive. This results in a slightly more branched definition, which we omitted for brevity.

Page 4 of 15Šmelko et al. BMC Bioinformatics (2024) 25:199

MaBoSS algorithm simulates the above process to produce stochastic trajectories:
sequences of states S0, S1, . . . , Sk and time points t0 < t1 < · · · < tk where t0 = 0 and
S0 is the initial state, and for each i ∈ {0, . . . , k − 1} , Si transitions to Si+1 at time ti+1 .
The simulation ends either by a timeout when reaching the maximal allowed time, or by
reaching a fixed point state with no outgoing transitions. The algorithm for a single itera-
tion of the trajectory simulation is given explicitly in Algorithm 1, which is the direct
application of the Gillespie stochastic simulation algorithm on the Boolean state space.

Algorithm 1 A single iteration of the MaBoSS simulation of a trajectory, given the state S and time t.

Multiple trajectories are generated and aggregated in compound trajectory statistics.
Commonly obtained statistics include:

• Network state probabilities on a time window—Trajectory states are divided by their
transition times into time windows based on the time intervals specified by a win-
dow size. For each window, the probability of each state is computed as the duration
spent in the state divided by the window size. The probabilities of the corresponding
windows are then averaged across all subtrajectories.

• Final states—The last sampled states from the trajectories are used to compute a final
state distribution.

• Fixed states—All reached fixed points are used to compute a fixed state distribution.

To maintain the brevity in the statistics, MaBoSS additionally allows marking some
nodes internal. This is useful because nodes that are not “interesting” from the point of
final result view occur quite frequently in Boolean models, and removing them from sta-
tistics computation often saves a significant amount of resources.

Computational complexity of parallel MaBoSS algorithm

Simulation complexity

We estimate the time required to simulate c trajectories as follows: For simplification,
we assume that a typical Boolean logic formula in a model of n nodes can be evaluated
in O(n) (this is a very optimistic but empirically valid estimate). With that, the compu-
tation of all possible transition rates (Algorithm 1, line 2) can be finished in O(n2) . The

(5)Bi(S) =

{

0 if Si = fi(S)
r otherwise

Page 5 of 15Šmelko et al. BMC Bioinformatics (2024) 25:199

selection of the flipping bit (Algorithm 1, line 4) can be finished in O(n) , and all other
parts of the iteration can finish in O(1) . In total, the time complexity of one iteration is
O(n2) . If we simulate c trajectories with an upper bound of trajectory length u, the simu-
lation time is in O(c · u · n2).

In an idealized PRAM (parallel random access machine [19]) model with infinite par-
allelism, we can optimize the algorithm in the following ways:

• Given c processors, all trajectory simulations can be performed in parallel, reducing
the time complexity to O(u · n2) . (Note that this does not include the results aggre-
gation. See Statistics aggregation section for further description.)

• With n processors, the computation of transition rates in the simulation can be done
O(n) time, and the selection of the flipping bit can be done in O(log n) time using a
parallel prefix sum, giving O(n) time for a single iteration.

Thus, using a perfect parallel machine with c · n processors, the computation time can be
reduced to O(u · n) . Notably, the O(u) simulation steps that must be performed serially
remain a major factor in the whole computation time.

Statistics aggregation

The aggregation of the statistics from the simulations is typically done by updating a
shared associative structure indexed by model states, differing only in update frequency
between the three kinds of collected statistics.

If the associative structure is implemented as a hashmap, the updates can be done in
O(1) for a single process. With multiple processors, the algorithm may hold partial ver-
sions of the hashmap for each processor, and aggregate all of them at the end of the com-
putation, which can be done in O(log c ·m) using c processors, assuming the maximal
size of statistic to be m.

As an interesting detail, the hash structures pose a surprising constant-factor over-
head. In networks where most nodes are internal, the hash map may be replaced by a
fixed-size multidimensional array that holds an element for all possible combinations of
external node values (basically forming a multidimensional histogram). We discuss the
impact of this optimization in Implementation section.

MaBoSS CPU implementation

MaBoSS was initially developed as a single-core application, but swiftly, it was extended
with a basic parallelism to exploit the multi-core nature of modern CPUs. In this par-
allel implementation, the simulation of trajectories and the statistics aggregation were
distributed among multiple cores using POSIX threads. In the following sections of the
papers, this implementation will serve as a baseline, and we will refer to it simply as the
CPU version.

Each statistics data held by a thread is represented by a hash map with the keys as
the states of the model and the values as a numerical value. Therefore, their aggregation
from multiple trajectories of multiple threads is carried out by a well-researched parallel
sum reduction. To better understand how a researcher can use MaBoSS output, in the

Page 6 of 15Šmelko et al. BMC Bioinformatics (2024) 25:199

following section, we discuss the differences between the statistics in greater detail and
show the standard ways of their visualization.

Statistics output and visualization

Each of the three kinds of statistics is in its nature a sample from a probabilistic distri-
bution of Boolean states. This sample is represented in code as a hash map in the CPU
version, varying in the (key, value) pairs according to the specific statistic. For the final
states, the keys of the hash map are the model states, and the values are the number of
times the state was sampled as the last in a trajectory. Such output can be visualized as a
pie chart (see Fig. 1). The fixed states are represented similarly, but only the fixed points
are stored in the hash map as keys.

The final and fixed state statistics characterize the behavior of the model at one point
in time—at the end of the simulation. The network state probabilities on a time win-
dow highlight more dynamic characteristics of the model, showing how the average
trajectory evolves over the simulation time. Programmatically, it is an extension of the
final state statistics—instead of one hash map, there is a hash map for each time win-
dow. The hash map values are the state durations in the specific time window aggregated
over all simulated trajectories. Further, these statistics can be visualized in various ways
using a line chart. Figure 2 shows which non-internal nodes are active throughout the
simulation.

As mentioned at the beginning of the section, if the trajectory does not reach a fixed
point, the simulation is stopped after the maximal allowed time. This is a common sce-
nario, especially when some trajectories form cycles, i.e., when a model has cyclic attrac-
tor, also known as limit cycles. A limit cycle is usually not directly visible from the state
probability line charts; Stoll et al. [15] proposed methods to detect them (such as plot-
ting the state and transition entropies), but we do not discuss the methods further in this
paper for the sake of brevity.

Fig. 1 The final states pie chart shows the distribution of the last trajectory states. Labels denote which
active non‑internal nodes compose the state. nil label represents the state where all non‑internal nodes are
inactive

Page 7 of 15Šmelko et al. BMC Bioinformatics (2024) 25:199

Implementation
MaBoSS.GPU

Simulation

In the CPU version of MaBoSS, the simulation part is the most computationally
demanding part, with up to 80% of MaBoSS runtime spent by just evaluating the
Boolean formulae (the exact number depends on the model). The original formula
evaluation algorithm in MaBoSS used a recursive traversal of the expression tree,
which (apart from other issues) causes memory usage patterns unsuitable for GPUs:
the memory required per each core is not achievable in current GPUs, and there are
typically too many cache misses [20].

There are multiple ways to optimize the expression trees for GPUs: One may use a
linked data structure that is more cache-friendly such as the van Emde Boas tree lay-
out [21], or perhaps represent the Boolean formulae as a compact continuous array,
or convert it to CNF or DNF (conjunctive or disjunctive normal form) bitmasks that
can be easily evaluated by vector instructions. We decided to leave the exact rep-
resentation choice on the compiler, by encoding the expressions as direct code and
using the runtime compilation of GPU code [22]. In such an approach, the application
reads the model files, writes the formulae as functions in CUDA C++ language, com-
piles them using the NVIDIA runtime compiler, and finally runs the simulation on
GPU—all without user intervention.

Fig. 2 The line chart of trajectory state probabilities over time windows. Each line represents the ratio of an
active non‑internal node in the time window over all trajectories (e.g., at the beginning of the simulation,
the Apoptosis node is inactive in all simulated trajectories and as the time reaches the value of 10, Apoptosis
is active in around 40% of trajectories). The x‑axis represents the discrete simulation time with the window
width of 0.1

Page 8 of 15Šmelko et al. BMC Bioinformatics (2024) 25:199

Using this technique, the Boolean formulae are compiled as functions into a native
binary code, which is directly executed by the GPU. As the main advantage, the for-
mulae are encoded in the instructions, preventing unnecessary fetches of the encoded
formulae from other memory. At the same time, the compiler may apply a vast spec-
trum of optimizations on the Boolean formulae, including case analysis and shortcut-
ting, again resulting in faster evaluation.

A possible drawback of the runtime compilation stems from the relative slowness of
the compiler—for small models, the total execution time of MaBoSS.GPU may be easily
dominated by the compilation.

The work distribution was chosen to be one trajectory simulation per GPU thread.
Due to the involved implementation complexity, we avoided optimization of the com-
putation of individual trajectories by splitting the Boolean function evaluation into mul-
tiple threads (thus missing the factor of n threads from the asymptotic analysis). While
such optimization might alleviate some cache pressure and thus provide significant per-
formance improvements, we leave its exploration to future work.

Statistics aggregation

For optimizing the statistics aggregation, MaBoSS.GPU heavily relies on the fact that the
typical number of non-internal nodes in a real-world MaBoSS model rarely exceeds 10
nodes, regardless of the size of the model. This relatively low number of states generated
by non-internal nodes allows us to materialize the whole statistics structure (called “his-
togram”) as a fixed-size array (rarely exceeding 210 elements).

This approach allows us to avoid storing the states as the keys and gives a simple
approach that can map the state to the histogram index using simple bit masking and
shifting instructions. Further, we use several well-known GPU histogram update optimi-
zations to improve the performance, including shared memory privatization and atomic
operations.

MaBoSS.MPI

MaBoSS.MPI is a straightforward extension of the original MaBoSS CPU code to the
MPI programming interface. Briefly, each MPI node is assigned to simulate the same
number of trajectories (up to a remainder). These are further uniformly distributed
among the CPU cores of the node, each thread progressively collecting the results into a
privatized hashmap-based statistics aggregation structure.

Once all trajectory simulations are finished and the statistics are computed for each
thread, the intermediate data are reduced into the final result using MPI collective
operations.

Results
To evaluate the impact of the implemented optimizations, we present the results of per-
formance benchmarks for MaBoSS.GPU and MaBoSS.MPI by comparing their runt-
imes against the original CPU implementation. To obtain a comprehensive overview of
achievable results, we used both real-world models and synthetic models with varying
sizes.

Page 9 of 15Šmelko et al. BMC Bioinformatics (2024) 25:199

Benchmarking methodology

For the benchmarks, we used 3 real-world models of 10, 87 and 133 nodes (cellcycle
[4], sizek [5] and Montagud [8]). In order to test the scalability of the GPU and MPI
implementation, we also created several synthetic models with up to 1000 nodes. Syn-
thetic models were designed in a way such that the length of each simulated trajectory is
predictable, and the models have no stable states. The average length was arbitrarily set
to 100, which creates reasonably-sized serial tasks to saturate the tested hardware well.
Also, the number of non-internal nodes was kept low (5 nodes) to enable the usage of
the histogram optimization. The synthetic models together with their Python genera-
tor are available in the replication package. Table 1 summarizes the main features of the
benchmarked models.

The GPU implementation benchmarks were run on a datacenter-grade NVIDIA Tesla
A100 GPU and a consumer-grade NVIDIA RTX 3070 Laptop GPU. The CPU imple-
mentation benchmarks were run on a 32-core Intel Xeon Gold 6130 CPU with multi-
threading. The CPU implementation was compiled with GCC 13.2.0, and the GPU
implementation was compiled with CUDA 12.2. Each measurement was repeated 10
times, and the average runtime was used as the final result.

Table 1 The main features of the synthetic and real‑world models used in the benchmarks.

It includes the size of models in terms of nodes and non-internal nodes, the number of simulated trajectories, the average
formula size measured as the arithmetic mean of operands count in each formula, and the average length of all simulated
trajectories. Note that not all combinations of features for the synthetic model were used in the benchmarks, see the
following figures for more details

Model # Nodes (non-inter.) # Traj. Avg. formula size Avg.
traj.
length

cellcycle 10 (4) 1M 4 26

sizek 87 (4) 1M 22 525

Montagud 133 (3) 1M 4 197

Synthetic 10–1000 (5) 1–100M 10–100 100

6.55s

−41x
−16x

64.05s

−145x −108x

201.47s

−326x −313x

cellcycle Montagud sizek

100s

10s

100 ms
500 ms

10s

100 ms
500 ms

100 ms

500 ms

W
al

l t
im

e
(s

qr
t−

sc
al

e)

Machine
Intel Xeon Gold 6130 (MaBoSS.CPU) NVIDIA RTX 3070 Laptop (MaBoSS.GPU)

NVIDIA Tesla A100 (MaBoSS.GPU)

Fig. 3 Wall time comparison of MaBoSS and MaBoSS.GPU on real‑world models. Each model is simulated
with 1 million trajectories

Page 10 of 15Šmelko et al. BMC Bioinformatics (2024) 25:199

The MPI implementation benchmarks were run on the MareNostrum 4
supercomputer.4

Performance of MaBoSS.GPU

In Fig. 3, we compare the wall time of the CPU and GPU implementations on real-world
datasets. The GPU implementation is faster than the CPU implementation on all mod-
els, and the speedup shows to be more significant on the models with more nodes and
longer trajectories. On the Montagud model with 133 nodes, but a relatively short
average trajectory, we achieve 145× speedup. On a slightly smaller sizek model with a
longer average trajectory, the speedup is up to 326×.

It is worth noting that the datacenter GPU performs worse than the laptop GPU. Both
devices are bottlenecked by the runtime compilation of the Boolean formulae, how-
ever, NVIDIA A100 spends on average around 300ms more on the compilation step.
Subtracting the compilation time, A100 is faster for all models. We did not spend time
finding the root cause of this discrepancy since the value is negligible and the follow-
ing benchmarks show that the runtime compilation overhead quickly disappears with
increasing model size.

Figure 4 shows much finer performance progression on synthetic models. We observed
that the CPU variant starts to progress steeper at around the 100 nodes boundary. We
assume that the implementation hits the cache size limit, and the overhead of fetching
the required data from the memory becomes dominant. The same can be observed in
the GPU variant later at around 200 nodes. Expectably, the cache-spilling performance
penalty is much more significant on GPUs. Overall, the results suggest that the optimi-
zation of dividing transition rate computations among multiple threads, as mentioned in
Implementation section, may provide a better speedup for bigger models, as it alleviates
the register and cache pressure.

Additionally, Fig. 4 shows the total runtime of the GPU implementation including the
runtime compilation step. Comparing the panels, we observe that the relative runtime

Simulation Simulation + Runtime Compilation

10 20 40 100 200 400 1000 10 20 40 100 200 400 1000

100 ms

1s

10s

100s

Nodes count (log−scale)

W
al

l t
im

e
(lo

g−
sc

al
e)

Machine
Intel Xeon Gold 6130 (MaBoSS.CPU) NVIDIA RTX 3070 Laptop (MaBoSS.GPU)

NVIDIA Tesla A100 (MaBoSS.GPU)

Fig. 4 Wall time comparison of MaBoSS and MaBoSS.GPU on synthetic models with sizes ranging from 10
to 1000 nodes (x‑axis) and the formula size of 10. Each model is simulated with 1 million trajectories. The two
panels differ by the inclusion of the runtime compilation of the model logic, showing its impact on total run
time

4 https:// www. bsc. es/ maren ostrum/ maren ostrum

https://www.bsc.es/marenostrum/marenostrum

Page 11 of 15Šmelko et al. BMC Bioinformatics (2024) 25:199

compilation overhead quickly disappears with increasing model size. Figure 5 shows the
results of more detailed benchmarks for this scenario, as run on the NVIDIA Tesla A100
GPU. We observed that the compilation time is linearly dependent on the number of
nodes and formula lengths, which can be simply explained by the fact that these model
properties extend source files that need to be compiled by a linear factor. Notably, as
soon as the simulation becomes more computationally complex (e.g., by increasing the
number of nodes, the number of simulated trajectories or their average length), the com-
pilation time becomes relatively negligible even for models with unrealistically long for-
mulae. This suggests that the runtime compilation is a viable optimization methodology
also for much larger models.

Performance of MaBoSS.MPI

Figure 6 shows the efficiency of the MaBoSS.MPI implementation on the sizek model.
We ran multiple suites, ranging from a single MPI node up to 192 nodes, each running
20 cores. We can observe a close-to-linear speedup of up to 64 MPI nodes (1280 cores),

Formula size: 10 Formula size: 20 Formula size: 50 Formula size: 100

200 400 600 800 1000200 400 600 800 1000200 400 600 800 1000200 400 600 800 1000

10%

30%

50%

Nodes count

%
 o

f t
ot

al
 ti

m
e

co
m

pi
lin

g
(lo

g−
sc

al
e)

Simulated Trajectories 4M 6M 8M 10M

Fig. 5 The ratio of time spent in the runtime compilation of the Boolean formulae in relation to the total
runtime, simulating models with varying numbers of nodes, trajectories, and formula lengths

101 s

102 s

103 s

104 s

1 10 100 1000
Cores (log−scale)

W
al

l t
im

e
(lo

g−
sc

al
e)

Software
MPI
CPU

Fig. 6 Scalability results of MPI implementation on Sizek model simulating 1 million trajectories with up to
192 MPI nodes and 20 cores per node, summing up to 3840 cores

Page 12 of 15Šmelko et al. BMC Bioinformatics (2024) 25:199

and a plateau for larger suites (Fig. 6, green). This can be explained by hitting an expecta-
ble bottleneck in parallelization overhead and MPI communication cost when the prob-
lem is divided into too many small parts.

To stress the scalability of the implementation, we also used the synthetic model with
1000 nodes running 100 million trajectories. We simulated this model on 32 cores per
MPI node, on 1 to 192 nodes (32 to 6144 cores). The obtained speedups are summa-
rized in Fig. 7. Using this configuration, the simulation time decreases from 20 h on 1
MPI node to 430 s on 192 nodes. As expected, the plateau in the speedup was observed
only for much bigger suites. More specifically, we can see a pronounced decrease in the
speedup at 192 nodes, hitting the aforementioned bottleneck during the utilization of
more than 4096 cores.

Conclusions
In this work, we presented two new implementations of MaBoSS tool, a continuous time
Boolean model simulator, both of which are designed to enable utilization of the HPC
computing resources: MaBoSS.GPU is designed to exploit the computational power of
massively parallel GPU hardware, and MaBoSS.MPI enables MaBoSS to scale to many
nodes of HPC clusters via the MPI framework. We evaluated the performance of these
implementations on real-world and synthetic models and demonstrated that both vari-
ants are capable of providing significant speedups over the original CPU code. The GPU
implementation shows 145–326× speedup on real-world models, and the MPI imple-
mentation delivers a close-to-linear strong scaling on big models.

Overall, we believe that the new MaBoSS implementations enable simulation and
exploration of the behavior of very large, automatically generated models, thus becom-
ing a valuable analysis tool for the systems biology community.

Future work

During the development, we identified several optimization directions that could be
taken by researchers to further scale up the MaBoSS simulation approach.

0.85x

0.9x

0.95x

1x

30 100 300 1000 3000
Cores (log−scale)

Sp
ee

du
p

pe
r c

or
e

(lo
g−

sc
al

e)
Software

MPI

Fig. 7 Speedup scaling of MPI implementation on the synthetic model with 1000 nodes, 100 million
trajectories and the formula size of 10, running on up to 192 MPI nodes with 32 cores per MPI node,
summing up to 6144 cores

Page 13 of 15Šmelko et al. BMC Bioinformatics (2024) 25:199

Mainly, the parallelization scheme used in MaBoSS.GPU could be enhanced to also
parallelize over the evaluation of Boolean formulae. To avoid GPU thread divergence,
this would however require a specialized Boolean formula representation, entirely
different from the current version of MaBoSS; likely even denying the relative effi-
ciency of the use of runtime compilation. On the other hand, this optimization might
decrease the register pressure created by holding the state data, and thus increase the
performance on models with thousands of nodes.

In the long term, easier optimization paths might lead to sufficiently good results:
For example, backporting the GPU implementation improvements back to the
MaBoSS CPU implementation could improve the performance even on systems where
GPU accelerators are not available. Similarly, both MaBoSS.GPU and MaBoSS.MPI
could be combined into a single software that executes distributed GPU-based analy-
sis over multiple MPI nodes, giving a single high-performance solution for extremely
large problems.

Availability and requirements

• Project name: MaBoSS.GPU
• Project home page: https:// github. com/ sysbio- curie/ MaBoSS. GPU
• Operating system(s): Platform independent
• Programming language: C++, CUDA
• Other requirements: Flex, Bison, CMake >= 3.18, Cuda toolkit >= 12.0
• License: MIT
• Any restrictions to use by non-academics: None
• Project name: MaBoSS.MPI
• Project home page: https:// github. com/ sysbio- curie/ MaBoSS
• Operating system(s): Platform independent
• Programming language: C++
• Other requirements: Flex, Bison
• License: BSD3-clause
• Any restrictions to use by non-academics: None

Abbreviations
HPC High performance computing
CPU Central processing unit
GPU Graphical processing unit
MPI Message passing interface
PRAM Parallel random access machine
CNF Conjunctive normal form
DNF Disjunctive normal form

Acknowledgements
We thank Laurence Calzone and Gautier Stoll for their guidance and fruitful discussions.

Author contributions
A.S. implemented MaBoSS.GPU, V.N. implemented MaBoSS.MPI. M.K., E.B., V.N. supervised the project. All authors wrote
the manuscript. All authors reviewed the manuscript.

https://github.com/sysbio-curie/MaBoSS.GPU
https://github.com/sysbio-curie/MaBoSS

Page 14 of 15Šmelko et al. BMC Bioinformatics (2024) 25:199

Funding
The research leading to these results has received funding from the European Union’s Horizon 2020 Programme under
the PerMedCoE Project (http://www.permedcoe.eu), grant agreement no 951773. The project was partially supported by Charles University,

SVV project number 260698.

Availability of data and materials
The scripts, presented plots, data and instructions to reproduce the benchmarks are available on GitHub [23].

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no conflict of interest.

Received: 22 March 2024 Accepted: 20 May 2024

References
 1. Brodland GW. How computational models can help unlock biological systems. In: Seminars in cell and developmental

biology, vol 47. Elsevier; 2015. pp. 62–73.
 2. Bongrand P. Understanding how cells probe the world: a preliminary step towards modeling cell behavior? Int J Mol Sci.

2023;24(3):2266.
 3. Machado D, Costa RS, Rocha M, Ferreira EC, Tidor B, Rocha I. Modeling formalisms in systems biology. AMB Express.

2011;1:1–14.
 4. Fauré A, Naldi A, Chaouiya C, Thieffry D. Dynamical analysis of a generic Boolean model for the control of the mamma‑

lian cell cycle. Bioinformatics. 2006;22(14):124–31. https:// doi. org/ 10. 1093/ bioin forma tics/ btl210.
 5. Sizek H, Hamel A, Deritei D, Campbell S, Ravasz Regan E. Boolean model of growth signaling, cell cycle and apoptosis

predicts the molecular mechanism of aberrant cell cycle progression driven by hyperactive pi3k. PLoS Comput Biol.
2019;15(3):1006402. https:// doi. org/ 10. 1371/ journ al. pcbi. 10064 02.

 6. Fumiã HF, Martins ML. Boolean network model for cancer pathways: predicting carcinogenesis and targeted therapy
outcomes. PLoS ONE. 2013;8(7):1–11. https:// doi. org/ 10. 1371/ journ al. pone. 00690 08.

 7. Wooten DJ, Groves SM, Tyson DR, Liu Q, Lim JS, Albert R, Lopez CF, Sage J, Quaranta V. Systems‑level network modeling
of small cell lung cancer subtypes identifies master regulators and destabilizers. PLoS Comput Biol. 2019;15(10):1–29.
https:// doi. org/ 10. 1371/ journ al. pcbi. 10073 43.

 8. Montagud A, Béal J, Tobalina L, Traynard P, Subramanian V, Szalai B, Alföldi R, Puskás L, Valencia A, Barillot E, Saez‑
Rodriguez J, Calzone L. Patient‑specific Boolean models of signalling networks guide personalised treatments. Elife.
2022;11:72626. https:// doi. org/ 10. 7554/ eLife. 72626.

 9. Licata L, Lo Surdo P, Iannuccelli M, Palma A, Micarelli E, Perfetto L, Peluso D, Calderone A, Castagnoli L, Cesareni G. Signor
2.0, the signaling network open resource 2.0: 2019 update. Nucleic Acids Res. 2020;48(D1):504–10. https:// doi. org/ 10.
1093/ nar/ gkz949.

 10. Türei D, Korcsmáros T, Saez‑Rodriguez J. Omnipath: guidelines and gateway for literature‑curated signaling pathway
resources. Nat Methods. 2016;13(12):966–7. https:// doi. org/ 10. 1038/ nmeth. 4077.

 11. Aghamiri SS, Singh V, Naldi A, Helikar T, Soliman S, Niarakis A. Automated inference of Boolean models from molecular
interaction maps using CaSQ. Bioinformatics. 2020;36(16):4473–82. https:// doi. org/ 10. 1093/ bioin forma tics/ btaa4 84.

 12. Chevalier S, Noël V, Calzone L, Zinovyev A, Paulevé L. Synthesis and simulation of ensembles of Boolean networks for
cell fate decision. In: Computational methods in systems biology: 18th international conference, CMSB 2020, Konstanz,
Germany, September 23–25, 2020, Proceedings, vol 18. Springer; 2020. pp. 193–209. https:// doi. org/ 10. 1007/ 978‑3‑ 030‑
60327‑4_ 11.

 13. Beneš N, Brim L, Huvar O, Pastva S, Šafránek D. Boolean network sketches: a unifying framework for logical model infer‑
ence. Bioinformatics. 2023;39(4):158. https:// doi. org/ 10. 1093/ bioin forma tics/ btad1 58.

 14. Prugger M, Einkemmer L, Beik SP, Wasdin PT, Harris LA, Lopez CF. Unsupervised logic‑based mechanism inference for
network‑driven biological processes. PLoS Comput Biol. 2021;17(6):1–30. https:// doi. org/ 10. 1371/ journ al. pcbi. 10090 35.

 15. Stoll G, Viara E, Barillot E, Calzone L. Continuous time Boolean modeling for biological signaling: application of Gillespie
algorithm. BMC Syst Biol. 2012;6(1):1–18. https:// doi. org/ 10. 1186/ 1752‑ 0509‑6‑ 116.

 16. Stoll G, Caron B, Viara E, Dugourd A, Zinovyev A, Naldi A, Kroemer G, Barillot E, Calzone L. Maboss 2.0: an environment for
stochastic Boolean modeling. Bioinformatics. 2017;33(14):2226–8. https:// doi. org/ 10. 1093/ bioin forma tics/ btx123.

 17. Gillespie DT. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J
Comput Phys. 1976;22(4):403–34.

 18. Gillespie DT, Hellander A, Petzold LR. Perspective: stochastic algorithms for chemical kinetics. J Cheml Phys. 2013;138:17.
 19. Fortune S, Wyllie J. Parallelism in random access machines. In: Proceedings of the tenth annual ACM symposium on

theory of computing; 1978. pp. 114–118.

http://www.permedcoe.eu
https://doi.org/10.1093/bioinformatics/btl210
https://doi.org/10.1371/journal.pcbi.1006402
https://doi.org/10.1371/journal.pone.0069008
https://doi.org/10.1371/journal.pcbi.1007343
https://doi.org/10.7554/eLife.72626
https://doi.org/10.1093/nar/gkz949
https://doi.org/10.1093/nar/gkz949
https://doi.org/10.1038/nmeth.4077
https://doi.org/10.1093/bioinformatics/btaa484
https://doi.org/10.1007/978-3-030-60327-4_11
https://doi.org/10.1007/978-3-030-60327-4_11
https://doi.org/10.1093/bioinformatics/btad158
https://doi.org/10.1371/journal.pcbi.1009035
https://doi.org/10.1186/1752-0509-6-116
https://doi.org/10.1093/bioinformatics/btx123

Page 15 of 15Šmelko et al. BMC Bioinformatics (2024) 25:199

 20. Karlsson M, Dahlgren F, Stenstrom P. A prefetching technique for irregular accesses to linked data structures. In: Proceed‑
ings sixth international symposium on high‑performance computer architecture. HPCA‑6 (Cat. No. PR00550). IEEE; 2000.
pp. 206–217. https:// doi. org/ 10. 1109/ HPCA. 2000. 824351.

 21. Emde Boas P. Preserving order in a forest in less than logarithmic time. In: 16th Annual symposium on foundations of
computer science (sfcs 1975). IEEE; 1975. pp. 75–84. https:// doi. org/ 10. 1016/ 0020‑ 0190(77) 90031‑X.

 22. CUDA NVRTC. 2023. https:// docs. nvidia. com/ cuda/ nvrtc/ index. html. Accessed 14 Feb 2024.
 23. Šmelko A. sysbio‑curie/hpcmaboss‑artifact: updated scripts, plots, data and instructions to reproduce the bench‑

marks for the MaBoSS HPC paper. https:// doi. org/ 10. 5281/ zenodo. 11128 107.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/HPCA.2000.824351
https://doi.org/10.1016/0020-0190(77)90031-X
https://docs.nvidia.com/cuda/nvrtc/index.html
https://doi.org/10.5281/zenodo.11128107

	Maboss for HPC environments: implementations of the continuous time Boolean model simulator for large CPU clusters and GPU accelerators
	Abstract
	Background:
	Results:
	Conclusion:

	Introduction
	Background
	Boolean signaling models
	MaBoSS: Markovian Boolean stochastic simulator
	Computational complexity of parallel MaBoSS algorithm
	Simulation complexity
	Statistics aggregation

	MaBoSS CPU implementation
	Statistics output and visualization

	Implementation
	MaBoSS.GPU
	Simulation
	Statistics aggregation

	MaBoSS.MPI

	Results
	Benchmarking methodology
	Performance of MaBoSS.GPU
	Performance of MaBoSS.MPI

	Conclusions
	Future work

	Availability and requirements
	Acknowledgements
	References

