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Abstract 

Background:  Computational models in systems biology are becoming more impor‑
tant with the advancement of experimental techniques to query the mechanistic 
details responsible for leading to phenotypes of interest. In particular, Boolean mod‑
els are well fit to describe the complexity of signaling networks while being simple 
enough to scale to a very large number of components. With the advance of Boolean 
model inference techniques, the field is transforming from an artisanal way of build‑
ing models of moderate size to a more automatized one, leading to very large models. 
In this context, adapting the simulation software for such increases in complexity 
is crucial.

Results:  We present two new developments in the continuous time Boolean simula‑
tors: MaBoSS.MPI, a parallel implementation of MaBoSS which can exploit the com‑
putational power of very large CPU clusters, and MaBoSS.GPU, which can use GPU 
accelerators to perform these simulations.

Conclusion:  These implementations enable simulation and exploration of the behav‑
ior of very large models, thus becoming a valuable analysis tool for the systems biology 
community.

Keywords:  Computational biology, High performance computing, Boolean models

Introduction
Biological systems are large and complex, and understanding their internal behavior 
remains critical for designing new therapies for complex diseases such as cancer. A cru-
cial approach in this endeavor is building computational models from existing knowl-
edge and analyzing them to find intervention points and to predict the efficacy of new 
treatments [1, 2]. Many different frameworks have been used to describe biological sys-
tems, from quantitative systems of differential equations to more qualitative approaches 
such as Boolean models [3]. While the former seems more adapted to represent complex 
behavior, such as non-linear dependencies, the latter is being increasingly used because 
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of its capability to analyze very large systems. Many Boolean models have been built to 
describe biological systems to tackle a variety of problems: from understanding funda-
mental properties of cell cycle [4, 5] to advanced properties of cancer [6–8].

Historically, the task of building Boolean models involved reading an extensive 
amount of literature and summarizing it in a list of essential components and their inter-
actions. More recently, database listings of such interactions [9, 10] and experimental 
information retrieval techniques on a bigger number of components were subjected to 
many advancements. Combined with the design of automatic methods for Boolean for-
mulae inference from the constraints encoded in the knowledge and the experimental 
data [11–14], these new developments allows the construction of large Boolean models. 
While this effort faces many challenges, we believe it is a promising way to study the 
large-scale complexity of biological systems. However, in order to analyze the dynamic 
properties of such large Boolean models, we need to develop efficiently scalable simula-
tion tools.

Here, we present adaptations of MaBoSS [15, 16]—a stochastic Boolean simulator that 
performs estimations of state probability trajectories based on Gillespie stochastic simu-
lation algorithm [17]—to modern HPC computing architectures, which provide signif-
icant speedups of the computation, thus allowing scrutinization and analysis of much 
larger Boolean models. In particular, the problem of properly quantifying low abundant 
phenotypes [18] can now be tackled by making more realistic the large number of simu-
lation needed to cover the space of possible trajectories. The main contributions com-
prise two new implementations of MaBoSS:

•	 MaBoSS.GPU, a GPU-accelerated implementation of MaBoSS, which is designed to 
exploit the computational power of massively parallel GPU hardware.

•	 MaBoSS.MPI, a parallel implementation of MaBoSS which can scale to multinode 
environments, such as large CPU clusters.

The source code of the proposed implementations is publicly available at their respective 
GitHub repositories.1 We also provide the scripts, presented plots, data and instructions 
to reproduce the benchmarks in the replication package.2

To showcase the utility of the new implementations, we performed benchmarking on 
both existing models and large-scale synthetic models. As the main results, MaBoSS.
GPU provided over 200× speedup over the current version of MaBoSS on a wide range 
of models using contemporary GPU accelerators, and MaBoSS.MPI is capable of almost 
linear performance scaling with added HPC resources, allowing similar speedups by uti-
lizing the current HPC infrastructures.

Background
Boolean signaling models

A Boolean signaling model consists of n nodes, which can represent a gene, protein 
or an event in a cell. Nodes are either active or inactive, gaining binary values 1 or 0 

1  https://​github.​com/​sysbio-​curie/​MaBoSS.​GPU, https://​github.​com/​sysbio-​curie/​MaBoSS.
2  https://​github.​com/​sysbio-​curie/​hpcma​boss-​artif​act.

https://github.com/sysbio-curie/MaBoSS.GPU
https://github.com/sysbio-curie/MaBoSS
https://github.com/sysbio-curie/hpcmaboss-artifact
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respectively. The state of the whole model is represented by a vector S of n binary values 
where Si represents the value of the i-th node. We denote the set of all possible states as 
S = {0, 1}n ; thus |S| = 2n.

Interactions in the model are described as transitions between two states. A single 
state can have multiple transitions to other states with assigned transition probabili-
ties. In turn, a Boolean network is represented as a directed weighted graph G = (S , ρ) , 
where ρ : S × S → [0,∞) is a transition function generating transition rates. These 
rates define edge weights of G, which are used to compute the probability of a transition 
from state S to S′ in the following way:

For convenience, it holds that

MaBoSS: Markovian Boolean stochastic simulator

MaBoSS simulates the asynchronous update strategy, where only a single node changes 
its value in each transition (as opposed to the synchronous update strategy, for which all 
nodes that can be updated are updated [15]). Therefore, there is a transition from S to S′ 
only if it holds that

Consequently, S can have at most n possible transitions. In programming terms, S′ is 
obtained by flipping the j-th bit of S.

To determine the possible transition rates, each node follows the Boolean logic 
Bi : S → [0,∞) , which determines the expected Poisson-process rate of transitioning to 
the other value. If Bi(S) = 0 , then the transition at node i is not allowed in state S. Given 
this formalization, the simulation can be also viewed as a continuous-time Markov 
process.

The main computational part of the Boolean logic is its binary function f : S → {0, 1} , 
which consists of logical operators (such as and, or, xor, not) with nodes as operands. For 
example,

is the binary function for node i, having nodes 2, 3 and 4 as its operands. The binary 
function of a node determines the value to which the node can transition. Thus, S can 
transition at node i at rate r only if fi(S)  = Si . Concisely, Bi is defined as3

(1)P(S → S′) =
ρ(S, S′)

S′′∈S ρ(S, S′′)
.

(2)ρ(S, S′) = 0 ⇐⇒ there is no transition from S to S′.

(3)
Sj  = S′j for a given j

Si = S′i for i  = j.

(4)fi(S) = (S2 ∧ S3) ∨ S4

3  Generally, Bi can be defined using a pair of binary formulas [15]: one used when a node is active and one when it is 
inactive. This results in a slightly more branched definition, which we omitted for brevity.
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MaBoSS algorithm simulates the above process to produce stochastic trajectories: 
sequences of states S0, S1, . . . , Sk and time points t0 < t1 < · · · < tk where t0 = 0 and 
S0 is the initial state, and for each i ∈ {0, . . . , k − 1} , Si transitions to Si+1 at time ti+1 . 
The simulation ends either by a timeout when reaching the maximal allowed time, or by 
reaching a fixed point state with no outgoing transitions. The algorithm for a single itera-
tion of the trajectory simulation is given explicitly in Algorithm 1, which is the direct 
application of the Gillespie stochastic simulation algorithm on the Boolean state space.

Algorithm 1  A single iteration of the MaBoSS simulation of a trajectory, given the state S and time t.

Multiple trajectories are generated and aggregated in compound trajectory statistics. 
Commonly obtained statistics include:

•	 Network state probabilities on a time window—Trajectory states are divided by their 
transition times into time windows based on the time intervals specified by a win-
dow size. For each window, the probability of each state is computed as the duration 
spent in the state divided by the window size. The probabilities of the corresponding 
windows are then averaged across all subtrajectories.

•	 Final states—The last sampled states from the trajectories are used to compute a final 
state distribution.

•	 Fixed states—All reached fixed points are used to compute a fixed state distribution.

To maintain the brevity in the statistics, MaBoSS additionally allows marking some 
nodes internal. This is useful because nodes that are not “interesting” from the point of 
final result view occur quite frequently in Boolean models, and removing them from sta-
tistics computation often saves a significant amount of resources.

Computational complexity of parallel MaBoSS algorithm

Simulation complexity

We estimate the time required to simulate c trajectories as follows: For simplification, 
we assume that a typical Boolean logic formula in a model of n nodes can be evaluated 
in O(n) (this is a very optimistic but empirically valid estimate). With that, the compu-
tation of all possible transition rates (Algorithm 1, line 2) can be finished in O(n2) . The 

(5)Bi(S) =

{

0 if Si = fi(S)
r otherwise
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selection of the flipping bit (Algorithm 1, line 4) can be finished in O(n) , and all other 
parts of the iteration can finish in O(1) . In total, the time complexity of one iteration is 
O(n2) . If we simulate c trajectories with an upper bound of trajectory length u, the simu-
lation time is in O(c · u · n2).

In an idealized PRAM (parallel random access machine [19]) model with infinite par-
allelism, we can optimize the algorithm in the following ways:

•	 Given c processors, all trajectory simulations can be performed in parallel, reducing 
the time complexity to O(u · n2) . (Note that this does not include the results aggre-
gation. See Statistics aggregation section for further description.)

•	 With n processors, the computation of transition rates in the simulation can be done 
O(n) time, and the selection of the flipping bit can be done in O(log n) time using a 
parallel prefix sum, giving O(n) time for a single iteration.

Thus, using a perfect parallel machine with c · n processors, the computation time can be 
reduced to O(u · n) . Notably, the O(u) simulation steps that must be performed serially 
remain a major factor in the whole computation time.

Statistics aggregation

The aggregation of the statistics from the simulations is typically done by updating a 
shared associative structure indexed by model states, differing only in update frequency 
between the three kinds of collected statistics.

If the associative structure is implemented as a hashmap, the updates can be done in 
O(1) for a single process. With multiple processors, the algorithm may hold partial ver-
sions of the hashmap for each processor, and aggregate all of them at the end of the com-
putation, which can be done in O(log c ·m) using c processors, assuming the maximal 
size of statistic to be m.

As an interesting detail, the hash structures pose a surprising constant-factor over-
head. In networks where most nodes are internal, the hash map may be replaced by a 
fixed-size multidimensional array that holds an element for all possible combinations of 
external node values (basically forming a multidimensional histogram). We discuss the 
impact of this optimization in Implementation section.

MaBoSS CPU implementation

MaBoSS was initially developed as a single-core application, but swiftly, it was extended 
with a basic parallelism to exploit the multi-core nature of modern CPUs. In this par-
allel implementation, the simulation of trajectories and the statistics aggregation were 
distributed among multiple cores using POSIX threads. In the following sections of the 
papers, this implementation will serve as a baseline, and we will refer to it simply as the 
CPU version.

Each statistics data held by a thread is represented by a hash map with the keys as 
the states of the model and the values as a numerical value. Therefore, their aggregation 
from multiple trajectories of multiple threads is carried out by a well-researched parallel 
sum reduction. To better understand how a researcher can use MaBoSS output, in the 
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following section, we discuss the differences between the statistics in greater detail and 
show the standard ways of their visualization.

Statistics output and visualization

Each of the three kinds of statistics is in its nature a sample from a probabilistic distri-
bution of Boolean states. This sample is represented in code as a hash map in the CPU 
version, varying in the (key, value) pairs according to the specific statistic. For the final 
states, the keys of the hash map are the model states, and the values are the number of 
times the state was sampled as the last in a trajectory. Such output can be visualized as a 
pie chart (see Fig. 1). The fixed states are represented similarly, but only the fixed points 
are stored in the hash map as keys.

The final and fixed state statistics characterize the behavior of the model at one point 
in time—at the end of the simulation. The network state probabilities on a time win-
dow highlight more dynamic characteristics of the model, showing how the average 
trajectory evolves over the simulation time. Programmatically, it is an extension of the 
final state statistics—instead of one hash map, there is a hash map for each time win-
dow. The hash map values are the state durations in the specific time window aggregated 
over all simulated trajectories. Further, these statistics can be visualized in various ways 
using a line chart. Figure 2 shows which non-internal nodes are active throughout the 
simulation.

As mentioned at the beginning of the section, if the trajectory does not reach a fixed 
point, the simulation is stopped after the maximal allowed time. This is a common sce-
nario, especially when some trajectories form cycles, i.e., when a model has cyclic attrac-
tor, also known as limit cycles. A limit cycle is usually not directly visible from the state 
probability line charts; Stoll et al. [15] proposed methods to detect them (such as plot-
ting the state and transition entropies), but we do not discuss the methods further in this 
paper for the sake of brevity.

Fig. 1  The final states pie chart shows the distribution of the last trajectory states. Labels denote which 
active non-internal nodes compose the state. nil label represents the state where all non-internal nodes are 
inactive
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Implementation
MaBoSS.GPU

Simulation

In the CPU version of MaBoSS, the simulation part is the most computationally 
demanding part, with up to 80% of MaBoSS runtime spent by just evaluating the 
Boolean formulae (the exact number depends on the model). The original formula 
evaluation algorithm in MaBoSS used a recursive traversal of the expression tree, 
which (apart from other issues) causes memory usage patterns unsuitable for GPUs: 
the memory required per each core is not achievable in current GPUs, and there are 
typically too many cache misses [20].

There are multiple ways to optimize the expression trees for GPUs: One may use a 
linked data structure that is more cache-friendly such as the van Emde Boas tree lay-
out [21], or perhaps represent the Boolean formulae as a compact continuous array, 
or convert it to CNF or DNF (conjunctive or disjunctive normal form) bitmasks that 
can be easily evaluated by vector instructions. We decided to leave the exact rep-
resentation choice on the compiler, by encoding the expressions as direct code and 
using the runtime compilation of GPU code [22]. In such an approach, the application 
reads the model files, writes the formulae as functions in CUDA C++ language, com-
piles them using the NVIDIA runtime compiler, and finally runs the simulation on 
GPU—all without user intervention.

Fig. 2  The line chart of trajectory state probabilities over time windows. Each line represents the ratio of an 
active non-internal node in the time window over all trajectories (e.g., at the beginning of the simulation, 
the Apoptosis node is inactive in all simulated trajectories and as the time reaches the value of 10, Apoptosis 
is active in around 40% of trajectories). The x-axis represents the discrete simulation time with the window 
width of 0.1
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Using this technique, the Boolean formulae are compiled as functions into a native 
binary code, which is directly executed by the GPU. As the main advantage, the for-
mulae are encoded in the instructions, preventing unnecessary fetches of the encoded 
formulae from other memory. At the same time, the compiler may apply a vast spec-
trum of optimizations on the Boolean formulae, including case analysis and shortcut-
ting, again resulting in faster evaluation.

A possible drawback of the runtime compilation stems from the relative slowness of 
the compiler—for small models, the total execution time of MaBoSS.GPU may be easily 
dominated by the compilation.

The work distribution was chosen to be one trajectory simulation per GPU thread. 
Due to the involved implementation complexity, we avoided optimization of the com-
putation of individual trajectories by splitting the Boolean function evaluation into mul-
tiple threads (thus missing the factor of n threads from the asymptotic analysis). While 
such optimization might alleviate some cache pressure and thus provide significant per-
formance improvements, we leave its exploration to future work.

Statistics aggregation

For optimizing the statistics aggregation, MaBoSS.GPU heavily relies on the fact that the 
typical number of non-internal nodes in a real-world MaBoSS model rarely exceeds 10 
nodes, regardless of the size of the model. This relatively low number of states generated 
by non-internal nodes allows us to materialize the whole statistics structure (called “his-
togram”) as a fixed-size array (rarely exceeding 210 elements).

This approach allows us to avoid storing the states as the keys and gives a simple 
approach that can map the state to the histogram index using simple bit masking and 
shifting instructions. Further, we use several well-known GPU histogram update optimi-
zations to improve the performance, including shared memory privatization and atomic 
operations.

MaBoSS.MPI

MaBoSS.MPI is a straightforward extension of the original MaBoSS CPU code to the 
MPI programming interface. Briefly, each MPI node is assigned to simulate the same 
number of trajectories (up to a remainder). These are further uniformly distributed 
among the CPU cores of the node, each thread progressively collecting the results into a 
privatized hashmap-based statistics aggregation structure.

Once all trajectory simulations are finished and the statistics are computed for each 
thread, the intermediate data are reduced into the final result using MPI collective 
operations.

Results
To evaluate the impact of the implemented optimizations, we present the results of per-
formance benchmarks for MaBoSS.GPU and MaBoSS.MPI by comparing their runt-
imes against the original CPU implementation. To obtain a comprehensive overview of 
achievable results, we used both real-world models and synthetic models with varying 
sizes.
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Benchmarking methodology

For the benchmarks, we used 3 real-world models of 10, 87 and 133 nodes (cellcycle 
[4], sizek [5] and Montagud [8]). In order to test the scalability of the GPU and MPI 
implementation, we also created several synthetic models with up to 1000 nodes. Syn-
thetic models were designed in a way such that the length of each simulated trajectory is 
predictable, and the models have no stable states. The average length was arbitrarily set 
to 100, which creates reasonably-sized serial tasks to saturate the tested hardware well. 
Also, the number of non-internal nodes was kept low (5 nodes) to enable the usage of 
the histogram optimization. The synthetic models together with their Python genera-
tor are available in the replication package. Table 1 summarizes the main features of the 
benchmarked models.

The GPU implementation benchmarks were run on a datacenter-grade NVIDIA Tesla 
A100 GPU and a consumer-grade NVIDIA RTX 3070 Laptop GPU. The CPU imple-
mentation benchmarks were run on a 32-core Intel Xeon Gold 6130 CPU with multi-
threading. The CPU implementation was compiled with GCC 13.2.0, and the GPU 
implementation was compiled with CUDA 12.2. Each measurement was repeated 10 
times, and the average runtime was used as the final result.

Table 1  The main features of the synthetic and real-world models used in the benchmarks. 

It includes the size of models in terms of nodes and non-internal nodes, the number of simulated trajectories, the average 
formula size measured as the arithmetic mean of operands count in each formula, and the average length of all simulated 
trajectories. Note that not all combinations of features for the synthetic model were used in the benchmarks, see the 
following figures for more details

Model # Nodes (non-inter.) # Traj. Avg. formula size Avg. 
traj. 
length

cellcycle 10 (4) 1M 4 26

sizek 87 (4) 1M 22 525

Montagud 133 (3) 1M 4 197

Synthetic 10–1000 (5) 1–100M 10–100 100
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Fig. 3  Wall time comparison of MaBoSS and MaBoSS.GPU on real-world models. Each model is simulated 
with 1 million trajectories
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The MPI implementation benchmarks were run on the MareNostrum 4 
supercomputer.4

Performance of MaBoSS.GPU

In Fig. 3, we compare the wall time of the CPU and GPU implementations on real-world 
datasets. The GPU implementation is faster than the CPU implementation on all mod-
els, and the speedup shows to be more significant on the models with more nodes and 
longer trajectories. On the Montagud model with 133 nodes, but a relatively short 
average trajectory, we achieve 145× speedup. On a slightly smaller sizek model with a 
longer average trajectory, the speedup is up to 326×.

It is worth noting that the datacenter GPU performs worse than the laptop GPU. Both 
devices are bottlenecked by the runtime compilation of the Boolean formulae, how-
ever, NVIDIA A100 spends on average around 300ms more on the compilation step. 
Subtracting the compilation time, A100 is faster for all models. We did not spend time 
finding the root cause of this discrepancy since the value is negligible and the follow-
ing benchmarks show that the runtime compilation overhead quickly disappears with 
increasing model size.

Figure 4 shows much finer performance progression on synthetic models. We observed 
that the CPU variant starts to progress steeper at around the 100 nodes boundary. We 
assume that the implementation hits the cache size limit, and the overhead of fetching 
the required data from the memory becomes dominant. The same can be observed in 
the GPU variant later at around 200 nodes. Expectably, the cache-spilling performance 
penalty is much more significant on GPUs. Overall, the results suggest that the optimi-
zation of dividing transition rate computations among multiple threads, as mentioned in 
Implementation section, may provide a better speedup for bigger models, as it alleviates 
the register and cache pressure.

Additionally, Fig. 4 shows the total runtime of the GPU implementation including the 
runtime compilation step. Comparing the panels, we observe that the relative runtime 
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Fig. 4  Wall time comparison of MaBoSS and MaBoSS.GPU on synthetic models with sizes ranging from 10 
to 1000 nodes (x-axis) and the formula size of 10. Each model is simulated with 1 million trajectories. The two 
panels differ by the inclusion of the runtime compilation of the model logic, showing its impact on total run 
time

4  https://​www.​bsc.​es/​maren​ostrum/​maren​ostrum

https://www.bsc.es/marenostrum/marenostrum


Page 11 of 15Šmelko et al. BMC Bioinformatics          (2024) 25:199 	

compilation overhead quickly disappears with increasing model size. Figure 5 shows the 
results of more detailed benchmarks for this scenario, as run on the NVIDIA Tesla A100 
GPU. We observed that the compilation time is linearly dependent on the number of 
nodes and formula lengths, which can be simply explained by the fact that these model 
properties extend source files that need to be compiled by a linear factor. Notably, as 
soon as the simulation becomes more computationally complex (e.g., by increasing the 
number of nodes, the number of simulated trajectories or their average length), the com-
pilation time becomes relatively negligible even for models with unrealistically long for-
mulae. This suggests that the runtime compilation is a viable optimization methodology 
also for much larger models.

Performance of MaBoSS.MPI

Figure 6 shows the efficiency of the MaBoSS.MPI implementation on the sizek model. 
We ran multiple suites, ranging from a single MPI node up to 192 nodes, each running 
20 cores. We can observe a close-to-linear speedup of up to 64 MPI nodes (1280 cores), 
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192 MPI nodes and 20 cores per node, summing up to 3840 cores
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and a plateau for larger suites (Fig. 6, green). This can be explained by hitting an expecta-
ble bottleneck in parallelization overhead and MPI communication cost when the prob-
lem is divided into too many small parts.

To stress the scalability of the implementation, we also used the synthetic model with 
1000 nodes running 100 million trajectories. We simulated this model on 32 cores per 
MPI node, on 1 to 192 nodes (32 to 6144 cores). The obtained speedups are summa-
rized in Fig. 7. Using this configuration, the simulation time decreases from 20 h on 1 
MPI node to 430 s on 192 nodes. As expected, the plateau in the speedup was observed 
only for much bigger suites. More specifically, we can see a pronounced decrease in the 
speedup at 192 nodes, hitting the aforementioned bottleneck during the utilization of 
more than 4096 cores.

Conclusions
In this work, we presented two new implementations of MaBoSS tool, a continuous time 
Boolean model simulator, both of which are designed to enable utilization of the HPC 
computing resources: MaBoSS.GPU is designed to exploit the computational power of 
massively parallel GPU hardware, and MaBoSS.MPI enables MaBoSS to scale to many 
nodes of HPC clusters via the MPI framework. We evaluated the performance of these 
implementations on real-world and synthetic models and demonstrated that both vari-
ants are capable of providing significant speedups over the original CPU code. The GPU 
implementation shows 145–326× speedup on real-world models, and the MPI imple-
mentation delivers a close-to-linear strong scaling on big models.

Overall, we believe that the new MaBoSS implementations enable simulation and 
exploration of the behavior of very large, automatically generated models, thus becom-
ing a valuable analysis tool for the systems biology community.

Future work

During the development, we identified several optimization directions that could be 
taken by researchers to further scale up the MaBoSS simulation approach.
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Fig. 7  Speedup scaling of MPI implementation on the synthetic model with 1000 nodes, 100 million 
trajectories and the formula size of 10, running on up to 192 MPI nodes with 32 cores per MPI node, 
summing up to 6144 cores
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Mainly, the parallelization scheme used in MaBoSS.GPU could be enhanced to also 
parallelize over the evaluation of Boolean formulae. To avoid GPU thread divergence, 
this would however require a specialized Boolean formula representation, entirely 
different from the current version of MaBoSS; likely even denying the relative effi-
ciency of the use of runtime compilation. On the other hand, this optimization might 
decrease the register pressure created by holding the state data, and thus increase the 
performance on models with thousands of nodes.

In the long term, easier optimization paths might lead to sufficiently good results: 
For example, backporting the GPU implementation improvements back to the 
MaBoSS CPU implementation could improve the performance even on systems where 
GPU accelerators are not available. Similarly, both MaBoSS.GPU and MaBoSS.MPI 
could be combined into a single software that executes distributed GPU-based analy-
sis over multiple MPI nodes, giving a single high-performance solution for extremely 
large problems.

Availability and requirements

•	 Project name: MaBoSS.GPU
•	 Project home page: https://​github.​com/​sysbio-​curie/​MaBoSS.​GPU
•	 Operating system(s): Platform independent
•	 Programming language: C++, CUDA
•	 Other requirements: Flex, Bison, CMake >= 3.18, Cuda toolkit >= 12.0
•	 License: MIT
•	 Any restrictions to use by non-academics: None
•	 Project name: MaBoSS.MPI
•	 Project home page: https://​github.​com/​sysbio-​curie/​MaBoSS
•	 Operating system(s): Platform independent
•	 Programming language: C++
•	 Other requirements: Flex, Bison
•	 License: BSD3-clause
•	 Any restrictions to use by non-academics: None
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