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Multiscale models provide a unique tool for studying complex
processes that study events occurring at different scales across
space and time. In the context of biological systems, such mod-
els can simulate mechanisms happening at the intracellular level
such as signaling, and at the extracellular level where cells com-
municate and coordinate with other cells. They aim to under-
stand the impact of genetic or environmental deregulation ob-
served in complex diseases, describe the interplay between a
pathological tissue and the immune system, and suggest strate-
gies to revert the diseased phenotypes. The construction of these
multiscale models remains a very complex task, including the
choice of the components to consider, the level of details of the
processes to simulate, or the fitting of the parameters to the data.
One additional difficulty is the expert knowledge needed to pro-
gram these models in languages such as C++ or Python, which
may discourage the participation of non-experts. Simplifying
this process through structured description formalisms — cou-
pled with a graphical interface — is crucial in making model-
ing more accessible to the broader scientific community, as well
as streamlining the process for advanced users. This article in-
troduces three examples of multiscale models which rely on the
framework PhysiBoSS, an add-on of PhysiCell that includes in-
tracellular descriptions as continuous time Boolean models to
the agent-based approach. The article demonstrates how to
easily construct such models, relying on PhysiCell Studio, the
PhysiCell Graphical User Interface. A step-by-step tutorial is
provided as a Supplementary Material and all models are pro-
vided at: https://physiboss.github.io/tutorial/.
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Introduction
Multiscale modeling is a valuable tool in understanding com-
plex biological systems, as it considers events occurring at
various spatial and temporal scales. Such models are in-
strumental in investigating the interplay between intracellular
level mechanisms, and intercellular interactions where cells
communicate and coordinate. This is especially pertinent in
the context of cancer, where multiscale models can be useful
when studying the cross-talk between the microenvironment
components, offering insights into the mechanisms of disease
progression and potential therapeutic strategies.
In this context, we developed hybrid models, which result in

a broader representation of biological systems, blending dis-
crete agent-based techniques with continuous mathematical
models (1). This approach allows for a detailed depiction of
individual cell behaviors while simultaneously capturing the
broader, continuous dynamics of the biological environment.
Such models are instrumental in accurately simulating the in-
tricate interactions within cancerous tissues, shedding light
on the complex interplay of cellular and molecular factors.
However, developing these models can be challenging, often
requiring proficiency in programming languages like C++ or
Python, which might not be accessible to all researchers.
An important advancement in this field was the introduc-
tion of PhysiBoSS(2, 3). This add-on to PhysiCell(4) en-
hances the modeling process by integrating intracellular de-
scriptions into the agent-based approach. PhysiBoSS uti-
lizes MaBoSS(5, 6), a tool that models signaling pathways
as Boolean networks, thus simplifying the description of in-
tracellular models. In addition, PhysiCell Studio(7), a graphi-
cal interface compatible with both PhysiCell and PhysiBoSS,
further streamlines model development, catering to users
with varying programming expertise. Despite these advance-
ments, building a model can still prove complex for non-
computational researchers who approach the software for the
first time. However, we have streamlined the process sig-
nificantly, making it more accessible and user-friendly. The
models presented in this paper showcase a range of com-
plexities and features, each highlighting a different aspect of
multiscale modeling challenges and their solutions. This pa-
per aims to demonstrate the construction of such multiscale
models to answer biological questions, and guides the read-
ers through the practical implementation of these models,
demonstrating their utility in cancer research.

Methods
Agent-based modeling with PhysiCell. Agent-based
modeling relies on a computational approach that uses au-
tonomous, interacting software agents to study the behaviors
of a system. An agent represents a single individual with
its own state and behaviors that can react to other agents or
the surrounding environment. Agent-based models allow for
studying the emergence of complex population events from a
simple set of agents’ behaviors. In medical science, an agent
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can represent a cell that can interact with other cells or its mi-
croenvironment. With this approach, it is possible to simulate
different biological scenarios, study collective cellular behav-
iors, and test hypotheses in silico. At present, many agent-
based frameworks are available, with different characteristics
to better answer different modeling needs (1). In this con-
text, the C++ PhysiCell framework uses a center-based ap-
proach, simulating mechanical and phenotypical cell dynam-
ics, as well as the diffusion of substrates to represent cellular
respiration, paracrine communication, and more (4). Physi-
Cell enables the customization of the simulations through a
general configuration XML file, with optional specifications
of initial cell positions and cell rules in CSV files. More re-
cently, it was extended with a modeling grammar that con-
nects signals (e.g., diffusing chemical factors) with changes
in cell behaviors, to help users straightforwardly model the
stimuli perceived by an agent and its behavioral reactions (8).
PhysiCell includes dictionaries of available signals and be-
haviors for use in PhysiBoSS models, and PhysiCell Studio
can use these pre-populated dictionaries to graphically con-
struct model rules.

Logical modeling with MaBoSS. Logical modeling pro-
vides an efficient way to study and represent complex behav-
ioral patterns in biology. This method involves representing
biological entities, such as genes, proteins, or full pathways,
as nodes within a network. Using a Boolean approach, each
node is a variable of the model that can take two values, 0 for
absent or inactive and 1 for present or active, and the update
of these variables is monitored by logical rules that link all
the inputs of a node with the logical connectors OR, AND,
and NOT. This type of models can be used to explore pa-
tients’ responses by simulating various initial conditions and
accounting for mutations observed in patients by forcing the
values of the corresponding variables in the model. MaBoSS
is a C++ software package for simulating Boolean models
using continuous time Markov processes (5, 6). It applies
an asynchronous update scheme, which allows the descrip-
tion of heterogeneous responses. By associating transition
rates to each variable, for both activation and inactivation,
it generates continuous trajectories with a notion of physical
time. MaBoSS uses two files for describing the model: the
BND file which contains the information about the Boolean
network, and the CFG file which contains the simulation set-
tings.

PhysiBoSS framework. PhysiBoSS is an add-on of Physi-
Cell that integrates a MaBoSS engine inside each agent. This
approach adds a new layer of description of the cell, with a
specific Boolean model that represents the cell’s intracellular
signaling dynamics. The Boolean network can be the same
for all the cells or separate networks can be assigned to each
cell type. At each simulation step, the agent (cell) can col-
lect different stimuli that modify the activity of some specific
nodes of the network (input nodes). Next, the MaBoSS en-
gine computes the model trajectory that can cause the switch
of the so-called phenotypic nodes (or output nodes). Those
nodes can then trigger some specific cell actions (motility,

secretion, uptake, death, etc.). PhysiBoSS uses as input the
same configuration files of PhysiCell, and the BND and CFG
MaBoSS input files.

Mapping agent-based to intracellular models. PhysiCell
provides a dictionary of signals and a dictionary for behav-
iors, aimed at giving better accessibility to all the signals per-
ceived by each agent and all possible behaviors that an agent
can express. PhysiBoSS uses these data structures to sim-
plify the connection between PhysiCell and MaBoSS, giving
access to the PhysiCell/MaBoSS mapping through the con-
figuration file and so, drastically diminishing the amount of
C++ code necessary to develop a model. Mapping can be of
two types: (1) input mapping, which links a PhysiCell signal
to a MaBoSS (input) node by using activation thresholds, or
(2) output mapping, which links a MaBoSS (output) node to a
PhysiCell behavior by using values representing the Boolean
state. Implementation details about the mapping are available
in the supplementary section S1.2.

Time synchronisation. The intracellular model
is updated periodically, according to the value of
intracellular_dt. The scaling parameter is
also available to match the time scale of the intracellular
model to the time scale of the agent-based model. Finally,
to account for biological phenomena such as cellular desyn-
chronization, an option is available for stochastic update
time. More information about the implementation of time in
PhysiBoSS is available in the supplementary sections S1.3
and S1.4.

Results
PhysiBoSS performs simulations of models that combine in-
tracellular molecular description (with MaBoSS) and physi-
cal intercellular communication (with PhysiCell). With this
approach, it is possible to study the impact of events that oc-
cur inside the cell at the level of the population and the effect
a treatment may have considering physical features.
We present three examples of multiscale models: (1) a mod-
ified version of a previously published model of cell fate de-
cision processes in response to death receptor engagement
and the effect of a TNF treatment on these decisions, (2) a
cell cycle model for investigating the consequences of ge-
netic perturbations in signaling, and (3) a simplified model
of immune cell differentiation. For each of these models, we
provide step-by-step procedures as supplementary materials
to build these models, which can be used as templates for
any other project. In the text below, we present and analyze
the expected behaviors for each of the three sample models to
serve as a reference for self-learners as they work through the
article and demonstrate the range of integrated model types
that can readily be built. The materials also include an addi-
tional improved version of a model of cell invasion already
published (9).

Cell fate model upon TNF treatment. Upon cell death
receptor engagement, different phenotypes can be triggered
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depending on the status of some cell components. Pro-
grammed cell death, through necroptosis or apoptosis, or sur-
vival through the NF-κB pathway can be activated. A previ-
ously published Boolean model of the complex intertwined
networks leading to these cell fates was used (10) and inte-
grated into PhysiBoSS (2) to study the effect of a TNF treat-
ment on a population of interacting cells by varying the type
of treatments (continuous vs. pulsating) and the composition
of the population (to explore the efficacy of the treatment of
a heterogeneous population). The model presented here is an
improved version of the initially published one modified to
fit the evolution of the tool.

Analysis of the intracellular model. The intracellular model
considers two receptors, Fas and TNF, and studies the condi-
tions that lead to either survival (Survival), programmed cell
death (Non_apoptotic_Cell_Death or NonACD), or apoptosis
(Apoptosis) (see Supplementary Materials, figure S9). With
MaBoSS(6), the proportion of the three cell fates can be
quantified and differences appear with varying initial condi-
tions or types of treatments: upon continuous TNF recep-
tor activation, most of the cells (95%) will trigger apoptosis,
while a small population of cells will activate either necropto-
sis (referred to as non-apoptotic cell death or NonACD) (3%)
or NF-κB-driven survival (2%); when cells are treated in a
pulsating manner (every 40 hours for 20 hours), the simula-
tion of a population of individual non-interacting cells shows
very little difference, even though, in contrast with the con-
tinuous treatment, at time 100, all cells have undergone apop-
tosis (Figure S11).
This model can also simulate gene mutations and the impact
they have on the cell fate distribution. For example, the dou-
ble mutant IKK++/cFLIP++ shows a shift of phenotypes fol-
lowing TNF treatment to only obtain resistant cells, with NF-
κB fully active.

Integration of the Boolean model in PhysiBoSS. When inte-
grating a Boolean model into PhysiBoSS, there are several
aspects to consider: (1) the time scales of the two models
which may require synchronization between the two scales,
and (2) the connection between the Boolean intracellular
model and the agent-based model.
The synchronization of the two time scales is a difficult task
as intracellular and extracellular events may not have the
same scales. The two parameters controlling timing are:
scaling and intracellular_dt. Since the standard
PhysiCell simulation time unit is in minutes, while the cell
fate model’s unit is in hours, the scaling parameter needs
to be set to 60, thus converting the MaBoSS model unit to
minutes. The second parameter specifies how often the cell
agents should execute and update their MaBoSS models. In
this specific case, the asymptotic behavior of the system is
considered, which is reached after 24h, setting the parameter
intracellular_dt to 1440 min (24h = 1440min). To
avoid having all our cells respond in synchrony to the TNF
treatment, we set the value of time_stochasticity, a
parameter responsible for producing slightly different peri-
odic updates, to 0.5 (this parameter describes the deviation

of the distribution, and is explained in the supplementary
section S1.4). The next step consists in the mapping of the
two models, described by three rules. The first mapping rule
is an input rule, which describes the condition in which the
TNF ligand in the vicinity of the cell will be able to acti-
vate the TNF input node of the intracellular model, then trig-
gering downstream intracellular events. The next two map-
ping rules are output rules, connecting the intracellular phe-
notypes to behaviors of the PhysiCell simulation. In the cell
fate model, there are three outputs, two of which correspond
to the two death phenotypes. The first output mapping rule
will link the Apoptosis node to the Apoptosis behavior,
which in PhysiCell is controlled by a fixed activation rate.
To be uniquely controlled by the Apoptosis node, we set this
rate to 0 when the node is inactive, and to a very high value
(1e+6) when the node is active (thus ensuring the apopto-
sis is deterministically activated at the next PhysiCell time
step). The second output mapping rule rule is similar for
the necrosis node (NonACD) which is linked to the activa-
tion rate controlling the PhysiCell Necrosis behavior. Fi-
nally, the last phenotype, Survival is left without any map-
ping, as it represents the complement of the two death phe-
notypes, so it can be described as a resistant phenotype to the
TNF treatment. Note that variations on this cell fate model
exist where the NFkB pathway is linked to an autocrine se-
cretion of TNF, which could create a feedback loop in our
model(11). A brief description of how to create this behavior
is described in the supplementary, section S3.8. To simulate
the TNF treatment in time, a function was added, controlled
by user parameters. Note that PhysiPKPD (12), a recent add-
on of PhysiCell, also facilitates the simulation of many types
of treatment. For the prolonged TNF treatment, the param-
eter treatment_duration was set to 11520 minutes (8
days), more than our simulation maximal time. In Figure 1A,
it can be observed that, while most of the population is killed
either by apoptosis or necrosis on day 2, a resistant popula-
tion emerges and leads to a large proliferating population on
day 8.

To reproduce the effect of a pulsatile treatment, the parame-
ters treatment_duration and treatment_period
were modified to simulate a treatment of 2000 minutes hap-
pening every 3440 minutes. In Figure 1B, the size of the
population of tumor cells decreases after each treatment.
Such treatments—if clinically validated—could potentially
be used to prevent the formation of a population resisting the
TNF treatment, as well as to reduce the toxicity of the treat-
ment.

Finally, to explore more functionalities of PhysiBoSS, we
also produced a version of the model accounting for the ob-
served necrotic core of the tumor due to the lack of oxygen
(see supplementary materials, section S3.6), and describing
the impact of IKK++ - cFLIP++ double mutations on the
outcome of the treatment (supplementary materials, section
S3.7). By building this model from the original PhysiBoSS
into PhysiBoSS 2.2, we showed that only a few simple steps
are now needed, allowing a much wider user base to build
complex models easily. A complete description of the steps
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Fig. 1. Simulation of the cell fate model upon TNF treatment, at t=2,4,8 days. A) MaBoSS simulation of a prolonged and continuous TNF treatment. B) MaBoSS simulation
of pulses of TNF treatment.

necessary to build this model is available in the supplemen-
tary, section S3.

Boolean cell cycle model. The cell cycle is a complex
system, controlled by cyclins and cyclin-dependent kinases
(CDKs) which act as checkpoints to ensure that the neces-
sary steps are performed and the cycle can progress. The loss
of control in proliferation is one of the hallmarks of cancer,
which may be due to some alterations in the signaling path-
ways that lead to the transcription of cell cycle genes. Physi-
Cell however represents this cycle as a straightforward pro-
cess, where each phase has a fixed transition rate, and no sig-
naling is involved to perturb it. With this example, we wanted
to integrate with PhysiBoSS a more realistic cell cycle model
and show how we can reproduce the effect of known muta-
tions. To this end, we used a published Boolean model of
the cell cycle from Sizek et al.(13) as an intracellular model,
and linked it to the transitions between the different phases to
control the progression of the PhysiCell cell cycle.

Analysis of the model. In their work, Sizek and colleagues
built a Boolean model that reproduces the cell cycle progres-
sion, including apoptosis and growth signals. The model
is composed of 87 nodes and captures PI3K/AKT1 activ-
ity during the cell cycle and its role in the deregulation
of PLK1 and FOXO3. The perturbations can lead to dif-
ferent cell fates such as G2 arrest characterized by a sus-
tained activity of Cyclin B, or mitotic catastrophe caused by
Casp2 activation during mitosis. To integrate the Boolean
network into PhysiBoSS, we first performed some analysis

of the model to decide which nodes would be responsible
for the switch between cell cycle phases. The analysis was
done using MaBoSS (6) and included in a Jupyter Notebook
where we simulated the wild-type model with different ini-
tial conditions, and mutants (see supplementary materials,
Cell_cycle_boolean_analysis.pdf).

The model analysis shows an interplay between components
of the cell cycle and the apoptotic pathway, highlighting the
role of Casp3, a read-out of cell death, which spontaneously
and gradually gets activated after several cycles. The model
can reproduce the sequential activation of the cyclins: Cyclin
E, Cyclin A, and Cyclin B, and their oscillation until Casp3
gets fully activated. However, we observed that this sequence
is not always preserved and can lead to an incomplete cell cy-
cle, such as Cyclin E and Cyclin A activation not followed by
a Cyclin B activation. An analysis of the transitions between
phases is also available in the Jupyter notebook mentioned
above.

The initial model reported published mutations and repro-
duced their phenotypes, which were then confirmed with the
MaBoSS simulations (see Cell_Cycle_Analysis note-
book in supplementary). Among these mutations, we focused
on the role of PLK1, FOXO3, p110, and PI3K. The loss func-
tion of PLK1 (PLK1 node is set to 0) leads to an overactiva-
tion of Cyclin B, indicating that the cells may be stuck in
the G2 phase, with no observed apoptosis. A knock-out of
FOXO3 (Foxo3 node is set to 0) leads to a failure of cytoki-
nesis. In this condition, most cells are unable to separate the
cytoplasm and to complete division. Some will start apopto-
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Fig. 2. Simulation of the Sizek cell cycle model. A) Wild-type simulation at both time 0 and after 96 simulated hours. B) Knock-in of p110 inactivates the apoptosis pathway
which increases the growth rate of the population, with 520 cells after 96 hours vs. 310 cells in Wild Type condition. C) FoxO3 knock-out simulation slows down the cell cycle,
diminishing the number of cell divisions, with 22 cells after 48 simulated hours. D) Plk1 knock-out simulation causes the majority of cells to be stuck in G2/M phase. All the
simulations were executed with a value of scaling of 37.5 and intracellular_dt of 2.5

sis, while the majority of them will stay in this failed state
(characterized by none of the cyclins nodes being active). Fi-
nally, the knock-in mutation of p110 (p110 node is set to 1)
shows an increase in the activity of AKT leading to a decrease
in the activity of the apoptosis pathway.

Among the in-built cell cycle models proposed by PhysiCell,
we selected one of the simplest, the Flow Cytometry model,
composed of 3 phases and 3 rates. In this model, a cell starts
at the default phase "G0G1" and enters the cell cycle with a
rate r01 to reach the "S" phase. From the "S" phase, it moves
to the "G2M" phase with a rate r12. Finally, the cell divides
and returns to the "G0G1" phase at a rate r20.

With PhysiBoSS, it is possible to associate the transition rates
of a cell cycle phase, to the state of a node of the Boolean
model. To facilitate this pairing, we included in the Sizek
model three phenotypic nodes that match the three transi-
tions of the Flow Cytometry model: G0G1_entry, S_entry

and G2M_entry. The state of these nodes is determined by
the activity of one or more Cyclins: CyclinD1 and CyclinA
control the G0G1_entry, CyclinA and CyclinE control the
S_entry and finally CyclinB controls the G2M_entry. The in-
troduction of these three read-out nodes does not affect the
behavior of the network but provides a single Boolean node
for each transition between the three phases.

Integration of the Boolean model in PhysiBoSS. To include
the Sizek model in PhysiBoSS, we focus on the two param-
eters that control the time synchronization and the mapping.
To synchronize the time between the two models, we started
by considering a cell cycle duration of 24 hours. Since a
full cell cycle in MaBoSS is achieved in 24 units of time, we
proceeded to set the scaling value to 60, similar to what was
done with the previous TNF model. However, this choice
did not result in a 24-hour cell cycle, but a longer one of
39 hours, partially due to the incomplete cycles mentioned
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in the previous section. To fix this, we calculated a correc-
tion for the scaling factor, setting it to 40 and reproducing
the expected cellular behaviors (see supplementary materi-
als, section S4.2). The time interval is set to a small value
(intracellular_dt = 1 min) since, contrary to the pre-
vious model, here it is important in this model to capture tran-
sient effects. The model does not take into account environ-
mental conditions, making irrelevant the mapping of input
nodes. However, it is possible to specify in the intracellu-
lar configuration the initial state of the inputs of the model,
such as the node Trail (death signal) or GF (growth factor).
We proceeded to connect the previously defined phenotype
nodes to the corresponding behaviors, associated with the
controls of the cell cycle transition rates. The S_entry node
is connected to the behavior Cycle entry, G2M_entry
to exit from cycle phase 1, G0G1_entry to exit
from cycle phase 2. Finally, the node Casp3 is con-
nected to the behavior apoptosis which concretely mod-
ifies the rate of activation of the apoptotic death model. The
basal value of all the rates is set to 0. When one of the nodes
regulating the phenotype is activated, the transition rate is
fixed to a very high value (1e+6) to immediately trigger the
phase switch or the apoptotic death. When the node is inhib-
ited, it restores the basal value of the transition rate.
The initial population of the PhysiBoSS simulations are set
to 13 cells (agents) growing to 310 in 96 hours (Figure2A).
The phases follow a proper order in individual cells, but not
all cells are in the same phase of the cycle as expected in a
desynchronized population of cells.
We further tested the impact of mutations at the population
level, by selecting the appropriate node to mutate and assign-
ing it a value of 0 (knock-out) or 1 (knock-in). The mu-
tant p110 overexpressed (p110 nodes fixed to 1) results in
decreasing the apoptosis with a consequent increase of the
proliferation rate, bringing the final number of cells after 96
hours from 13 to about 520 (Figure 2B). Next, we tested
FoxO3 knock-out (Foxo3 node fixed to 0). The simulations
show that the cells go through one cell cycle before either
dying or slowing down the proliferation. The cells are not
arrested in a specific phase of the cycle, but they keep prolif-
erating at a very low rate (Figure 2C). Finally, Plk1 knock-out
(Plk1 node fixed to 0), as expected from the MaBoSS anal-
ysis, causes the majority of the cells to get stuck in G2/M
phase, in a cell cycle arrest (Figure 2D).
In conclusion, the multiscale model of a detailed molecular
description of the cell cycle reproduces the complexity of the
cell cycle at the single and multicellular level, allowing not
only the modification of the duration of the cell cycle but
also the realization of mutations and the exploration multiple
initial conditions (corresponding different extracellular con-
texts). Some phenotypes were not observable with the intra-
cellular model only, such as the slowing down of the cycles,
but could be observed with the PhysiBoSS model. A com-
plete description of the steps necessary to build this model is
available in the supplementary, section S4.

Immune cell differentiation. The examples previously
presented assumed that all cells were of the same type. With

PhysiBoSS, it is possible to consider interactions among
several cell types with different intracellular models. In this
example, we showcase a simple model of cell differentiation,
where a cell of a specific type can transition into a different,
user-defined cell type. Moreover, we demonstrate how
different signals (diffusible chemical factors, type-specific
contacts) can be used as inputs to regulate key cell behaviors.
The model encompasses six different cell types and relies on
two different Boolean models.

Analysis of the intracellular models. The Boolean model for
cell differentiation is adapted from a previously published
model of Corral-Jara and colleagues (14), which describes
the processes of T cell differentiation. The model is based on
experiments performed on naive CD4+ T cells (referred to
as T0), which depending upon the effect of external stimuli,
can differentiate into either a Type 1 helper cell (Th1), a T
helper 17 cell (Th17), or a regulatory T cell (Treg). Note that
Corral-Jara’s model has been designed in GINsim software
in such a way that some nodes are multi-valued to represent
different levels of activation. MaBoSS does not allow dis-
crete levels and all multi-valued nodes are Booleanized into
two variables, e.g., MHCCII has been split into two variables
MHCII_b1, MHCII_b2. We also use a simple phenomeno-
logical model for dendritic cells with a small set of nodes
to describe their behavior. The model (Figure S24) encom-
passes a total of 4 nodes, of which 3 inputs (Maturation, Con-
tact, CCL21) and 1 phenotype node (Migration). A more
complex model can later replace this simple model.
In this model, under the chemoattractant effect of the CC mo-
tif chemokine ligand 21 (CCL21), a cytokine constitutively
expressed in secondary lymphoid organs (such as lymph
nodes), a population of mature dendritic cells (mDCs) is at-
tracted towards the draining lymph node. Concretely, the ac-
tivation of the node CCL21), when the node Maturation is
already active, activates the node Migration.
mDCs express a set of ligands capable of triggering the dif-
ferentiation of the T0 cell population into 3 different subsets
of CD4+ T cells, once in the lymph nodes. Among these
ligands, we can cite Interleukin-12 (IL-12), Interleukin-1β
(IL-1β), and other cytokines as Interleukin-6 (IL-6) or Trans-
forming growth factor beta (TGF-β). We chose not to in-
clude all those nodes in our mDC model and just represent
them by a single node Contact. The activation of this node
turns off the migration of the mDCs. Within the Corral-Jara’s
MaBoSS model, these ligands’ nodes are already present as
input nodes. The CD4 + T cell model includes 3 master tran-
scription factors considered as markers of differentiated T
cells: RORgt (Th17), FOXP3 (Treg) and Tbet (Th1). Based
on these nodes, we built three phenotype nodes (Th1, Treg,
and Th17), used later as output nodes, to better represent the
different cell types. The relative logical equations have been
constructed to avoid overlap between phenotypes so that each
one is mutually exclusive.
The model has been tested for mutants, to search for possi-
ble targets that can influence the probability of differentiation
for the three cell types. Those mutants, introduced at the be-
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Fig. 3. Simulation of the T cell differentiation model in 2 and 3 dimensions. A) Initial population of T cell (gray), with an endothelial cell (pink) secreting CC21. A population
of dendritic cells (blue) is attracted towards the source of CCL21. B) Upon contact, the dendritic cells trigger the receptors of the naive T cell, which start the differentiation
process according to the outputs of the intracellular model, into Treg (red), Th1 (yellow), and Th17 (green). C) Simulation of the T cell differentiation with NFkB knock-out,
resulting in only Treg. D) Simulation of the T cell differentiation with FOXP3 knock-out, resulting in only Th1 and Th17.

ginning of the simulation, should not trigger immediately the
differentiation of the T0 cell, but rather have an impact on the
differentiation process after contact with the mDC. Among
the mutants, we found some cells differenting into Treg ex-
clusively: (inhibitions of API, NFKB, LCK, TCR, RAS, ITK,
ERK, cFOS, cJUN, or IKK), into a mix of Th1 and Th17: in-
hibition of IL1RAP, IL1R1, IL1R, FOXP3_2, or activation of
MINA); and a mix of Treg and Th17 (inhibition STAT1, Tbet,
or PLCG). We also investigated the effect of modifying the
activation rate parameters, to control more finely the propor-
tions of Treg, and found that, for example, the activation rate
of NFKB can be lowered to increase the proportion of Treg,
while the activation rate of FOXP3_2 can be lowered to re-
duce their proportion (See supplementary materials, section
S5.4).

Integration of the Boolean models in PhysiBoSS. In this
model, there are several different cell types: naive T cells
(T0), dendritic cells, type 1 helper cells (Th1), T helper 17
cells, regulatory T cells, and finally lymphoid endothelial
cells. For the integration of the two Boolean models pre-

sented above into PhysiBoSS, two intracellular models are
created for the naive T Cells and the dendritic cells (see sup-
plementary materials, Figure S25 and S26). The other cell
types are considered as agents with no intracellular descrip-
tion. As for the TNF example, the asymptotic behaviors of
both the naive T cell and dendritic cell are considered. Based
on the MaBoSS simulations, the two parameters, scaling
and intracellular_dt are set to 1 (default value) and 6
(standard phenotype time step of PhysiCell), respectively.
For simplicity, we created one single endothelial cell secret-
ing CCL21, located in an area representing the lymph node.
We also created a population of T0 cells in the same area,
as well as a distant population of dendritic cells (Figure 3A).
The initial state of the PhysiBoSS simulation assumes that the
dendritic cells are mature, a condition in which they are ex-
pressing CCR7, a receptor that drives the migration of mature
DCs (mDCs) towards secondary lymphoid structures (i.e., the
lymph nodes). We then created one input mapping in the den-
dritic cells, linking the substrate CCL21 to the node CCL21.
Upon activation of the CCL21 node within the DC network,
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mDCs move towards the source of CCL21, following its gra-
dient combined with a random walk. Once in the lymph node,
the DC moves with a random walk, as hypothesized in (15).
To achieve this, we used the rules’ mechanism described in
(8) and created a rule where the stochasticity of the chemo-
taxis is dependent on the quantity of CCL21, creating a sat-
urating effect that progressively lowers the migration bias as
the CCL21 quantity increases.
When mDCs and T0 cells are in contact, the differentiation
process of naive T cells is triggered. The mDCs secrete ma-
jor cytokines that are essential to mediate first the contact
between DCs and T0 cells (a set consisting of IL-12, IL-1β,
IL-6, TGF-β, and IL-23), and then to trigger the cascades
leading to the three subsets of differentiated T cells, Th1,
Th17, and Treg. For the sake of simplicity, instead of al-
lowing each agent representing a dendritic cell to release cy-
tokines, we encoded such interactions by activating the input
corresponding to the cytokines within the T0 model. To do
this, we created many input mappings that connect the con-
tact of the dendritic cell with a T0 to the activation of the
input nodes corresponding to the cytokines that are released
by the dendritic cells. In addition to the above-mentioned
list of cytokines, input nodes triggered upon contact between
dendritic cells and T0 include also: MHCII_b1, MHCII_b2,
CD80, CD4 and PIP2. The activation of these nodes is nec-
essary to trigger the differentiation into Th1, Th17 or Treg
(Figure 3.B). To achieve this, we added three output mapping
rules, linking the transformation into these cell types to the
phenotype nodes Th1, Th17, Treg presented previously. None
of these new cell types have an intracellular model, so upon
differentiation, they lose all the T0 properties. This choice
was made to allow the implementation of specific behaviors
for the different T cell types in future versions of the Physi-
BoSS model.
We also included variants of this model representing the ef-
fect of two of the Th0 mutants described in the previous
section: the knock-out of NFKB, leading to a differentia-
tion exclusively in Treg (Figure 3.C), and the knock-out of
FOXP3_2, leading to a complete absence of differentiation
in Treg (Figure 3.D). We also showed two other variants with
lower activation rates of these two nodes (Figure S27.B and
D), representing an incomplete inhibition. These examples
showed how PhysiBoSS can describe the pharmacological
control of T-cell differentiation. A complete description of
the steps necessary to build this model is available in the sup-
plementary, section S5.

Discussion
In this paper, we presented new functionalities of PhysiBoSS,
which are drastically simplifying the process of creating
models. We show that using the new mapping system, we
can now easily connect the agent-based model to Boolean
intracellular models.
While the previous version of PhysiBoSS required knowl-
edge in C++ programming to allow the creation of models,
with this new version the user can completely rely on Physi-
Cell Studio, the graphical interface of PhysiCell, to build

a model from existing templates. These improvements are
important both to the new users discovering the framework,
and also to speed up the development of models by existing
users. For some specific functionalities which still require
writing code, such as the mechanisms regulating drug
treatments, new add-ons of PhysiCell are being developed to
simplify their accessibility.
While simple, we believe that the three models presented
here cover enough functionalities to give a good overview of
PhysiBoSS and provide broad examples to start from. We
are providing in the supplementary materials a step-by-step
guide for installing PhysiBoSS and PhysiCell Studio, and
for building these models to allow newcomers to follow the
process of creating them. The example of cancer invasion in
the supplementary shows a better real-world example, and
its comparison with the original models shows the simplicity
and power of the mapping system.

Integrating biological data into these models is the next logi-
cal step for them to go beyond toy models. Different types of
data can be used to address the different parts of the model:
spatial data (spatial transcriptomic, multiplex immunofluo-
rescence, ...) can be used for reproducing the disposition of
the cell in the tissue (8). Single-cell expression data can be
used to infer cell-cell communication (16), and to person-
alize the intracellular model (17). Finally, many physical
parameters could be obtained using time-lapse microscopy
data. However, tuning these parameters, even with appropri-
ate datasets, would still be a difficult endeavor. In this article,
we did not want to put too much emphasis on this, but it is
a real challenge that may be addressed with machine learn-
ing approaches. New methods are needed in this field, and
we believe the use of surrogate models (18, 19) will prove
itself fundamental. Despite these challenges, the improve-
ments in PhysiBoSS presented here will facilitate the use of
multiscale modeling and allow a larger community of users
to apply these tools to their questions.
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