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PhysiBoSS 2.0: a sustainable integration of stochastic Boolean
and agent-based modelling frameworks
Miguel Ponce-de-Leon 1,6, Arnau Montagud 1,6, Vincent Noël 2,3,4,6, Annika Meert1, Gerard Pradas 1, Emmanuel Barillot 2,3,4,
Laurence Calzone 2,3,4 and Alfonso Valencia 1,5✉

In systems biology, mathematical models and simulations play a crucial role in understanding complex biological systems. Different
modelling frameworks are employed depending on the nature and scales of the system under study. For instance, signalling and
regulatory networks can be simulated using Boolean modelling, whereas multicellular systems can be studied using agent-based
modelling. Herein, we present PhysiBoSS 2.0, a hybrid agent-based modelling framework that allows simulating signalling and
regulatory networks within individual cell agents. PhysiBoSS 2.0 is a redesign and reimplementation of PhysiBoSS 1.0 and was
conceived as an add-on that expands the PhysiCell functionalities by enabling the simulation of intracellular cell signalling using
MaBoSS while keeping a decoupled, maintainable and model-agnostic design. PhysiBoSS 2.0 also expands the set of functionalities
offered to the users, including custom models and cell specifications, mechanistic submodels of substrate internalisation and
detailed control over simulation parameters. Together with PhysiBoSS 2.0, we introduce PCTK, a Python package developed for
handling and processing simulation outputs, and generating summary plots and 3D renders. PhysiBoSS 2.0 allows studying the
interplay between the microenvironment, the signalling pathways that control cellular processes and population dynamics, suitable
for modelling cancer. We show different approaches for integrating Boolean networks into multi-scale simulations using strategies
to study the drug effects and synergies in models of cancer cell lines and validate them using experimental data. PhysiBoSS 2.0 is
open-source and publicly available on GitHub with several repositories of accompanying interoperable tools.

npj Systems Biology and Applications            (2023) 9:54 ; https://doi.org/10.1038/s41540-023-00314-4

INTRODUCTION
In systems biology, mathematical models and simulations play a
crucial role in understanding complex biological systems1.
Mathematical models provide a theoretical framework for study-
ing the properties and behaviour of biological systems at different
scales, including signalling and regulatory networks2,3 metabo-
lism4,5 as well as models integrating different intracellular
processes6. Beyond the cellular level of description, models and
simulations are also used to study population dynamics in a given
environment; some examples include simulating bacterial com-
munities7, tissues8 and tumour growth9,10.
Different modelling frameworks are employed depending on

the nature and scales of the system under study. For instance,
signalling and regulatory networks can be simulated using
Boolean modelling, an approach that employs logical rules and
discrete time to describe how signals propagate through the
molecular pathways and induce changes in the cell’s phenotype2.
In the context of cancer research, Boolean modelling has been
extensively used to uncover clues in a cell’s signalling network
that lead to disease3,11–13. Moreover, Boolean models can be used
to personalise treatment plans based on a patient’s specific
genetic and molecular profile, improving the efficacy and
outcome of the treatment14,15.
On the other hand, simulating the dynamics of a population of

cells in a defined environment requires the use of a more general
modelling framework, such as agent-based modelling (ABM)10. In
these models, agents represent individual cells that can interact
with each other and their environment (Fig. 1a). ABMs find

extensive application in different domains such as microbial
ecology7,16 and cancer research17–19.
In general, ABM frameworks use different types of solvers for

simulating processes occurring at different scales, such as
diffusion, mechanical interactions and cellular processes, e.g.
growth and division, and thus are commonly referred to as multi-
scale models (Fig. 1b)9,10,20. A good example is PhysiCell, a
multicellular simulation framework composed of different solvers,
such as a diffusion and transport solver used to simulate the
chemical microenvironment and its interaction with the cells, a
mechanical solver to simulate mechanical interaction between
cells, as well as other components to simulate cellular processes,
including growth, division, cell differentiation and death21,22.
Interestingly, PhysiCell has been extended to allow simulating

cell signalling and regulatory pathways, allowing the study of the
interplay between cell regulatory processes, the environment and
population-level dynamics23. This extension named PhysiBoSS23

was in its version 1.0 a standalone multi-scale simulation software
that was implemented by coupling an early version of PhysiCell
together with MaBoSS24,25, a continuous-time Markovian simulator
for Boolean models that describe the cell’s intracellular signalling
and regulatory networks.
PhysiBoSS allows bridging microenvironment signals, such as

drugs, their effect on signalling pathways and the resulting
population-level phenotypes23,26–28. The introduction of this
hybrid simulation framework was an important step toward the
mechanistic multi-scale description of complex biological systems
such as healthy tissues and tumours9. Nevertheless, in its original
version, PhysiBoSS presented some design problems as it lacked a
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clear interface between these two tools which resulted in a
software package that is hard to modify and extend without
changing core functionalities, hindering its long-term mainte-
nance and usability. Furthermore, it was designed and tested
using a specific signalling model with a set of predefined
phenotypes making it hard to adapt to different models and
use cases.
Herein, we present PhysiBoSS 2.0, a new design and reimple-

mentation of PhysiBoSS that solves the problems of its early
version, extends its functionalities and enables a more flexible
definition of models. PhysiBoSS 2.0 was implemented as an add-
on component of PhysiCell that provides access to the MaBoSS
simulator in a clear and transparent way. In this new design, both
PhysiCell and MaBoSS are decoupled and therefore, can be
upgraded independently (Fig. 2). Furthermore, the code was
designed and implemented following the best practices guide-
lines for bioinformatics software development, ensuring its long-
term maintenance and prolonging its lifespan29.
PhysiBoSS 2.0 includes new functionalities like allowing the use

of highly customisable settings such as user-defined Boolean
models and cell types defined in the configuration XML. We also
present PhysiCell Tool Kit (PCTK) a Python package developed for
handling and processing simulation outputs, generating summary
plots and 3D renders based on POV-Ray30. In this work, we show
different approaches for integrating Boolean models into multi-
scale simulations using the examples presented in the original
publication. Moreover, we have used PhysiBoSS 2.0 new features
to study the drug effects and synergies in multi-scale simula-
tions26,27 of a prostate cancer cell line, LNCaP, with six available
drugs31. We have validated the single-drug treatments using
experimental data and inspected closely the effect of drug
dosages in the generation of heterogeneities in the cell
population. Altogether, we show that PhysiBoSS 2.0 is a step
towards the development of a PhysiCell add-on ecosystem of
different types of models32 that allows for the scaling-up of
simulations in exascale high-performance computing
clusters20,26,33.

RESULTS
In this section, we first introduce the redesign of PhysiBoSS
together with the newly implemented features and functionalities.
Secondly, we present novel results as examples of the kind of
experiments possible with PhysiBoSS 2.0. We showcase here two
examples: the integration of different cell receptor models for

coupling the presence of environmental signalling substrates to
the intracellular Boolean model as well as the integration of
pharmacodynamics and Boolean models to conduct in-silico drug
screen studies.

The new design of PhysiBoSS 2.0 allows for extended
functionalities
PhysiBoSS is a multi-scale multicellular simulation framework that
integrates PhysiCell21 and MaBoSS24,25, enabling the simulation of
cell signalling and gene regulatory networks in each cell agent. In
this way, cell agents can integrate environmental and genetic
signals and respond according to their internal Boolean model
dynamics (see Fig. 2a). Therefore, PhysiBoSS bridges the molecular
level description of cell signalling and gene regulation with the
surrounding microenvironment and the population dynamics,
allowing the coupling between these different scales. For instance,
PhysiBoSS enables simulating drug studies such as adaptive
therapy in cell populations while considering the role of
heterogeneity among the cells and the environment and their
role in the emergence of drug resistance27.
In its original version, PhysiBoSS 1.023 was implemented

merging MaBoSS and PhysiCell by adapting several core classes
of the latter, resulting in a new standalone simulation framework.
This design proved to be very difficult to maintain and to keep it
aligned with the latest version of the original software compo-
nents. For the same reason, bug fixing and the development of
new features was also a difficult task. To solve these issues,
PhysiBoSS 2.034 was re-designed and re-implemented from
scratch as an add-on interface which decouples PhysiCell and
MaBoSS minimising dependencies and fixing many design
problems of version 1.0 (Fig. 2b and Supplementary Fig. 1). The
new add-on-based design was conceived with the PhysiCell’s
developer team and aims to simplify the tool’s maintenance and
enable the independent upgrade of the different software
components, something not possible in PhysiBoSS 1.0 (see
Supplementary Fig. 2). Therefore, with PhysiBoSS 2.0 new
implementation we aim to overcome several design problems
from its predecessor version 1.0.
PhysiBoSS 2.0 uses the latest versions of MaBoSS and PhysiCell

and thus incorporates all the new features and functionalities
provided by the individual frameworks. For instance, from version
1.9 PhysiCell allows to keep track of substrates internalised within
cells through a transport process. In PhysiBoSS 2.0, these
quantities can be used as signals or inputs of a Boolean model,
e.g. a drug that inhibits a target protein. Furthermore, it is also

Fig. 1 Multi-scale simulations in systems biology. a shows a schematic representation of an agent-based model of a 3D multicellular system
in a microenvironment defined by the domain divided into fixed volumes together with examples of different intracellular models including
signalling network, metabolism and cell cycle. b depicts examples of the different simulators and time scales for a multi-scale model including,
the Δtdiff time scale where diffusion, uptake and secretion processes are updated; Δtmec where the mechanics (movement and physical
interactions) are updated; Δtcell in which cell processes such as volume, cell cycle and death models are updated; and Δtreg the regulatory time
scale in which Boolean models are updated.
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possible to implement rule-based cell–cell and cell–extracellular
matrix contact behaviours that trigger signals that propagate
through a Boolean model28. On the other hand, the latest MaBoSS
release (2.4.0) allows working with Boolean models of unlimited
size as well as having these models defined in the SBML-qual
standard.
Among other new features, it is now possible to set up

simulations in the XML configuration file (see options in Table 1)
which include different cell types that are associated with specific
Boolean models. Moreover, we have standardised the integration
of the Boolean model by using custom modules that connect
intracellular variables to agent-based ones (discussed in Section
PhysiBoSS 2.0 reproduces original results and allows to test new
transport mechanisms). Table 1 summarises all the new features
that can be defined by the user using the extended PhysiCell XML
configuration file.

Finally, different sample projects and templates are provided
with the source code to facilitate the implementation of new
models (see Supplementary Section 1.4). PhysiBoSS 2.0 is written
in C++ and the implementation is described in further detail in
the Supplementary Methods, together with the introduction of a
template project for new users. PhysiBoSS 2.0 code is open-source
and distributed under BSD 3-clause license. The links to the
repositories of the different versions are provided in Table 3. In
addition, we also provide a nanoHUB GUI-based tool implement-
ing an example model to ease its use at https://nanohub.org/
tools/pba4tnf/.

Handling and processing simulation outputs
Processing, analysing and visualising multi-scale simulations’
output is a non-trivial task as it requires handling and integrating
several output file formats into aggregated easy-to-use data

Fig. 2 PhysiBoSS 2.0 add-on-based design. a shows a diagram of the add-on-based design of PhysiBoSS 2.0 that decouples PhysiCell and
MaBoSS providing Boolean simulation functionality to individual cell agents in a maintainable manner. b depicts a high-level view of the
PhysiCell and PhysiBoSS 2.0 and the communication between the different components.

Table 1. PhysiBoSS intracellular model configuration.

XML tag Description Default

bnd_filename Path to the MaBoSS BND file None

cfg_filename Path to the MaBoSS CFG file None

time_step Time step for the update of the intracellular model 12

scaling Parameter to adapt the time-scale of the MaBoSS model 1

time_stochasticity Parameter to configure stochastic update time 0

initial_values List of initial_values, to modify the initial value of a MaBoSS model node Empty

mutants List of mutants, to modify the value of a MaBoSS model node during the whole simulation Empty

parameters List of parameters, to modify the value of a MaBoSS model parameter Empty

M. Ponce-de-Leon et al.

3

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2023)    54 

https://nanohub.org/tools/pba4tnf/
https://nanohub.org/tools/pba4tnf/


frames as well as using 3D rendering libraries to generate visual
representations of the system. For this reason, in addition to
PhysiBoSS 2.0, we have developed the PhysiCell Toolkit (PCTK) a
Python-based package that includes a library and command-line
scripts to process and analyse simulation outputs. Although there
are already available tools for handling PhysiCell outputs (such as
https://github.com/PhysiCell-Tools/python-loader), with PCTK we
aim to gather and organise different pieces of Python code that
have been recurrently used in different projects involving
PhysiCell and PhysiBoSS. The package implements different
functionalities to parse and handle the MultiCellDS file
format35 and uses an efficient schema to process the output files
containing the cells and microenvironment data. Moreover, on top
of this module, we have implemented a command-line tool to
ease the processing of simulations’ output and create basic plain
text (CSV) data-frames as well as to generate basic plots, including
time courses of the number of alive and dead cells. Additionally, it
also provides command-line functionalities to allow users to
generate POV files used as inputs for the 3D rendering of the
multicellular models using POV-Ray30. Therefore, PCTK can be
used both as a callable library and as a stand-alone command-line
tool; the code is open-source and distributed under BSD 3-clause
license and the link to the repository can be found in Table 3.
Documentation and examples are also provided in the PCTK
repository36.

PhysiBoSS 2.0 reproduces original results and allows to test
new transport mechanisms
The new functionalities of PhysiBoSS 2.0 allow for better
modularity and ease of reuse of functions. These allow, for
instance, researchers to focus on the important step of defining
the interactions between variables of the intracellular Boolean
models and the ones from the cell agent and environment.
Depending on the level of detail desired, different approaches can
be used, but usually, the problem can be split into two different
sub-problems: how to couple cell and environmental signals
(continuous variables) into the Boolean input nodes and how to
use the value of the Boolean output nodes to control the
behaviour of the cell agents. In general, the mapping of
continuous variables into a Boolean value requires the use of a
transfer function. The simplest case is the use of a step function
H(x) which returns 1 when x ≥ θ and 0 otherwise, for a given
threshold θ, as we had in ref. 23. On the other hand, using the
value of the Boolean model’s output node to control the cell agent
behaviour can be done by modulating the specific rates of the cell
cycle or death models, as well as by triggering custom rules
defined by the modeller (see ref. 28).
To test and validate the new PhysiBoSS 2.0 and to show how

the different submodels can be integrated, we have re-
implemented the different models presented together with the
original PhysiBoSS 1.0 and replicated all the results reported by
ref. 23. In Letort et al., we implemented a multi-scale model of 3T3
fibroblast spheroids to investigate the complex dynamics
observed when tumour cells are exposed to different regimes of
tumour necrosis factor (TNF)37. The model integrates the Cell Fate
Boolean network3 inside the cell agents to simulate the growth of
a spheroid of cancer cells under different treatment regimes,
which correspond to the supply of TNF pulses with different
frequencies, duration and concentrations.
We re-implemented the model in PhysiBoSS 2.0 using an

extended version which includes a more detailed description of
the TNF-receptor binding mechanisms27. Figure 3 shows a
schematic representation of the multi-scale model as well the
difference between the TNF receptors and growth model used in
refs. 23,27. Details of the model formulation and implementation can
be found in the Supplementary Methods. The experiments consist of
an initial tumour spheroid of ~1000 cells that are exposed to

different concentrations and regimes of TNF. We run all the different
experiments using the same simulation setups to replicate Fig. 4
from ref. 23 using both the re-implemented model and PhysiBoSS 2.0
and the original code (additionally, we have also the matched results
of the same model in the original PhysiBoSS code and in PhysiBoSS
2.0 in Supplementary Section 2.1). The comparative results are
presented in Fig. 4, where each panel shows the output generated
by each of the two PhysiBoSS versions.
The results show that the simulations obtained with PhysiBoSS

2.0 qualitatively reproduce the results reported by Letort et al.
(2019). Specifically, the new implementation correctly reproduces
the pattern observed when cells are exposed to a continuous
supply of TNF causing cells to become resistant to the effect of the
cytokines (Fig. 4b–d). Moreover, the model implemented in
PhysiBoSS 2.0 also correctly predicts the reduction of the tumour
when cells are exposed to short pulses of TNF at a frequency of
150min (Fig. 4e) as well as the ineffective regime of short pulses
of TNF at a frequency of 600 min (Fig. 4f). Furthermore, we can
observe that PhysiBoSS 2.0 better captures the exponential
cell growth that was somehow biphasic in the original PhysiBoSS
(Fig. 4a). The differences observed in all the experiments are
mainly due to the differences in how the TNF binding and the cell
cycle models were implemented in the new version (see Fig. 3b).
Nevertheless, implementing the same cell cycle and transport
models retrieved the same results (Supplementary Section 2.1).
Beyond the difference in the transport mechanism, the new
version was implemented with a clear separation of the different
submodels as well as the interfaces to connect them and it can be
used as a sample project to implement new models since the
code is packed with PhysiBoSS 2.0.

Simulating drug screening studies and drug synergies
We used PhysiBoSS 2.0 new functionalities to portray the
phenotypic characteristics of cell lines and drugs’ effects and
synergies by using personalised Boolean models14,31 and GDSC
dose-response profiling data38. The models described in the
previous sections rely on a dynamic model that mechanistically
describes the interaction between the signal molecule (TNF) and
its target (TNF-receptor) and a step function to transfer the level of
TNF bound in the membrane to the corresponding Boolean input
node. However, the detailed mechanism and kinetics of how
drugs interact with their targets are largely unknown. For such
cases, in PhysiBoSS 2.0 users can leverage experimental dose-
response curves, such as the ones from GDSC, to include the effect
of drug concentrations when inhibiting a node of the intracellular
signalling model (Fig. 5).
Therefore, when a drug is available at a specific concentration in

the surroundings of a cell, the cellviability (alive cells after drug
treatment) is looked up in the dose-response curve that is specific
to the cell line and the drug, as described in ref. 38 using
fluorescent intensity with drug-treated and untreated samples.
Then, the corresponding drug target node in the Boolean model is
inhibited with a probability of 1− cellviability (see “Methods” for
further details). This ensures that for a concentration of IC90, for
example, a node inhibition would be obtained in 90% of the cases
and that an IC10 would lead to a node inhibition with 10%
probability (see an example dose–response curve in n Supple-
mentary Fig. 4. Here, we showcase examples that integrate
pharmacodynamics and Boolean models to study single drug
effects, drug combinations and their synergies.

Single drug screening studies. Using PhysiBoSS 2.0, we simulated
spheroids of ~1000 cells of the prostate cell line LNCaP for seven
days with six drugs (Table 2) in a three-dimensional domain where
the drugs were supplied from the domain boundaries (the box
walls) and diffused to the centre of the simulation space e
(Supplementary Fig. 15). We tested five different concentrations
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for each drug corresponding to the IC10, IC30, IC50, IC70 and IC90.
This rather simple setup leads to varying drug availability and
effects throughout the different layers of the tumour and,
therefore, heterogeneously affects the cancer cells depending
on their location and if they are surrounded by cells or in contact
with the microenvironment (see the following sections).
We simulated five concentration simulations for all six drugs

(Supplementary Fig. 9) and analysed the significance of growth
behaviour changes for each drug simulation, finding two out of six
drugs significant: Ipatasertib (targeting AKT) and Pictilisib (target-
ing PI3K) with P ≤ 0.0001 (Kruskal–Wallis rank sum test, Fig. 6a and
Supplementary Table 3). For instance, when simulating Pictilisib
dosages, we can see that starting with IC10, the Growth Index
decays until it is minimised at IC90 (Fig. 6a).

Double drugs’ screening studies. Furthermore, PhysiBoSS 2.0 also
enables combining the administration of more than one drug
allowing the simulation of drug-synergy studies. As with the
single-cell studies, we used PhysiBoSS 2.0 to simulate spheroids of
~1000 LNCaP cells with combinations of the aforementioned six
drugs with their five different concentrations (Table 2). We
identified two combinations of drugs as interesting: Pictilisib with
Ipatasertib and Pictilisib with Luminespib (targeting HSPs) with a
significant P value ≤0.0001 in the Kruskal–Wallis rank sum test. For
both drug combinations, we can observe a gradual growth
inhibition with the drug concentration (Fig. 6) and the indication
of drug synergy as combined inhibition levels outdo single effects
(Fig. 7). While the drug combination Pictilisib and Luminespib
requires IC70 and IC90 for both drugs to obtain a Growth Index of

Fig. 3 Different implementations of the multi-scale TNF models. a schematically represents the multi-scale model used to explore the 3T3
fibroblast spheroids growth dynamics under different TNF exposure regimes. b shows the intracellular models used in the PhysiBoSS original
publication (left) and the extended version implemented in PhysiBoSS 2.0 (right).
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around −0.3, the drug combination Pictilisib and Ipatasertib
reaches similar values already with much lower concentrations for
Pictilisib, IC30 or IC50 (Fig. 6a, b and Supplementary Fig. 9).
In addition, we studied the Bliss independence of these

combinations (Fig. 7 and Supplementary Fig. 11) and found
complex synergies in both cases. Synergy values reach their
maximum for Pictilisib and Luminespib with high drug concentra-
tion values of both compounds being Luminespib the drug
driving the synergy. For Pictilisib and Ipatasertib, on the other
hand, synergy values peak at IC50 and IC70 for both compounds.
Comparably, high drug concentrations of Ipatasertib especially

drive the synergy values. For both drug combinations synergy
values strongly decrease or even turn into slight antagonism with
low drug concentrations. Such varying combinatorial effects
depending on the drug concentration have previously been
observed experimentally. For instance, drug combinations can be
both antagonistic and synergistic at the same time which can be
described with the help of exposure-response surfaces39. These
surfaces can help in choosing drug concentrations for combina-
torial therapies. The complete study of LNCaP and six drugs
(Ipatasertib targeting AKT, Luminespib targeting HSPs, Pictilisib
targeting PI3K, Afatinib targeting EGFR, Ulixertinib targeting

Fig. 4 Pair comparison between results obtained using PhysiBoSS 1.0 and PhysiBoSS 2.0. The plots represent population growth curves for
the same TNF pulse in silico experiments reported in the PhysiBoSS 1.0 (left column) and 2.0 (right column). Each panel corresponds to a
different in silico experiment. a No TNF added; b single pulse of 0.5 ng/mL for 10 h (600 min); c single pulse of 0.5 mg/mL for 10 h followed by
a second pulse of 5 mg/mL for 14 h; d continuous pulse of 0.5 ng/mL throughout the 24 h the experiment last (1440 min); e TNF pulses of 0.5
ng/mL and duration of 10min at intervals of 150min; and f TNF pulses of 0.5 ng/mL and duration of 10 min at intervals of 600min. Vertical
grey patches represent the TNF pulses.

Fig. 5 Multi-scale simulation of LNCaP prostate cancer cell line and combinations of drugs. Overview of PhysiBoSS 2.0 simulation
framework. Drugs in the microenvironment affect the cells' behaviours according to an experimental drug-response curve. Depending on
how a specific drug affects a specific cell line, the node targeted by the drug is inhibited at a given rate affecting the cell’s phenotype
probabilities, allowing for a tailored simulation of drugs and cell lines.
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MAPK1, Selumetinib targeting MAP2K1 and MAP2K2) can be
found in Supplementary Section 2.2.3.

Studying the heterogeneity of drug screening simulations. The
integration of drug simulations in PhysiBoSS allows for the
expansion of the study of the heterogeneous behaviours
emerging from the cells. In Letort et al.23, we studied the effect
of different genetic backgrounds, such as mutants cFLIP+ IKK+
and CASP3+ Cytc+, in their response to TNF treatments, as we
have replicated in PhysiBoSS 2.0 (Supplementary Sections 2.1 and
2.2 and Supplementary Fig. 6). In addition to the genetic
perturbations, PhysiBoSS 2.0 can be used to study the hetero-
geneity in the cells’ response to drug inhibition in a population of
cells with a common genetic background. In this scenario,
heterogeneity comes from a non-homogeneous microenviron-
ment and is caused by the drug penetration into the cell
population resulting in varying substrate availability in different

Table 2. Drug–target pairs used to perform the drug simulations on
the LNCaP-specific Boolean model.

Gene targets Node Drug name Drug
GDSC ID

AKT1, AKT2, AKT3 AKT Ipatasertib 1924

EGFR EGFR Afatinib 1032

MAPK1 ERK Ulixertinib 2017/
1908

HSP90AA1, HSP90AB1, HSP90B1,
HSPA1A, HSPA1B, HSPB1

HSPs Luminespib 1559

MAP2K1, MAP2K2 MEK1_2 Selumetinib 1736

PIK3CA, PIK3CB, PIK3CG, PIK3CD,
PIK3R1, PIK3R2, PIK3R3, PIK3R4,
PIK3R5, PIK3R6, PIK3C2A

PI3K Pictilisib 1058

Fig. 6 Growth index of the multi-scale simulations with different drug combinations with respect to the untreated LNCaP. a Pictilisib and
Ipatasertib drug combination; b Pictilisib and Luminespib drug combination. Each simulation was replicated 10 times. For each combination,
the growth index was obtained by taking the log2 of the ratio between the median AUC upon drug administration and the median AUC of
the untreated simulations. “None” row and column means the cells were not treated with the drug. White colour means no growth behaviour
change upon drug administration, blue means the drug increased the growth and red means that the drug diminished the growth of the
cells. For a complete figure of all the combinations, refer to Supplementary Fig. 9.

Fig. 7 Bliss independence Combination Index (CI) of the multi-scale simulations of LNCaP with different drug combinations. a Pictilisib
and Ipatasertib drug combination; b Pictilisib and Luminespib drug combination. White colour indicates an additive effect, green colour a
synergistic effect and yellow an antagonistic effect. For a complete figure of all the combinations, refer to Supplementary Fig. 11.

M. Ponce-de-Leon et al.

7

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2023)    54 



regions of the spheroid of cells that affect the drug’s effectiveness.
In our simulations, the drug is supplied on the simulation
boundaries assuring a uniform administration of the drug. As
cells act as sinks for the drug, by uptaking it at a given rate, cells in
the outskirts of the spheroid will have more available drugs than
the ones in the spheroid centre (see Supplementary Fig. 15).
To study the effect of the position of the cell on their response

to the drugs, we simulated a spheroid of a radius of 100 μm with
drug administration on the boundaries with 10 replicates. We
studied the growth rate of the different layers of the spheroid by
splitting the spheroid into 50 μm-thick layers from their Euclidean
distance to the tumour centre. At the beginning of the
simulations and as the initial radius is 100 μm, the cells are only
in layers 1 and 2. Then the cells start growing into layer 3 at
around 200 min in the simulation, then layer 4 at around

5000 min and then 5 at around 8000min. Figure 8a depicts the
number of cells for each spheroid layer of one simulation with
and without drugs. Replicating this experiment yielded similar
results.
The growth curves obtained when applying Ipatasertib (IC50)

and Pictilisib (IC90) (Fig. 8a, blue) and without drug (Fig. 8a, red)
are almost identical for the inner layers 1 and 2, indicating the
absence of drugs in the central tumour regions. Layer 4, which
starts at 150 μm from the centre, is reached before by the cells
with no drug (red curve in Fig. 8a) than by the cells treated with
drugs (blue curve). This difference increases in layer 5, which
starts at 200μm from the centre, where the no-drug red curve
starts much sooner than the drug blue curve. In these layers, the
cells are closer to the drug source and more available drug that is
killing them by apoptosis.

Fig. 8 Heterogeneity of drug screening simulations. a shows the growth curves for the no-drug simulation and the drug simulation with
Ipatasertib (IC50) and Pictilisib (IC90) separated into sphere layers. By taking the distance to the tumour centre, we define five 50 μm-thick
spherical layers: layer one is the innermost layer and layer five corresponds to a distance from 200 to 250 μm from the tumour centre. From
these growth curves, the AUC values and growth indices are calculated for each layer separately. b shows a 3D representation of the cell
population growth indices of the five 50 μm-thick spherical layers at the end of the simulation. Layer 1 is the innermost layer from the centre
of the tumour to a distance of 50 μm from the centre. Blue cells are living cells and Red cells are apoptotic.
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Interestingly, the reduced survival of layers 4 and 5 of the drug
simulations is causing a slight increase in growth rate in layers
1–3 when compared to the no-drug simulation. We think this
increased growth in the inner layers can be explained by the
increase in available space. As drugs reduce the number of cells in
outer tumour regions, it leave more space for cells in inner
tumour regions to have space to proliferate. We can observe in
layers 3 and 4 the intercept point of when the tumour reaches a
size when not enough drug can reach the cells and the reduced
amount of surrounding cells increases the available space to
divide. Finally, the no-drug simulations have scarce space in the
inner layers, causing the cells to have an outwards pushing
dynamic that makes them reach layers 4 and 5 much sooner than
the drug simulations.
We gathered the layer-specific Growth Index by calculating the

AUCs of the median of the 10 replicates. We saw that an
administration of drugs on the boundaries leads to varying
growth indices among the tumour sphere layers (Fig. 8b). Cells in
the central tumour regions do not show any signs of growth
inhibition as they have slightly positive growth indices whereas
cells on the tumour boundaries show high growth inhibition
values with negative growth indices. In summary, the results of
these experiments respond to two different dynamics: first, by
uptaking drug from the environment, cells in the outer layers
have a shielding or protective effect on cells in the inner layers;
second, the death of the cells exposed to drugs in the outer layers
free up space for the proliferation of cells in the inner layers, even
in the innermost layer where space is the scarcest.

DISCUSSION
PhysiBoSS 2.0 is a redesign and reimplementation of PhysiBoSS to
be a reusable, extensible and updatable add-on for the PhysiCell
framework. The new add-on design of PhysiBoSS 2.0 allows us to
extend its functionalities, reuse in a more efficient way compart-
mentalised functions and replicate simulations32. Our tool follows
a modular design that decouples PhysiCell and MaBoSS codes,
minimising the dependencies between these tools and ensuring
long-term maintainability and is, therefore, more respectful of the
single responsibility principle and the façade pattern of software
design40. This modular design ensures long-term sustainability as
either tool (PhysiCell and MaBoSS) can now be updated
independently. Furthermore, we also include several sample
projects with different degrees of complexity that can be used
as templates to develop new models. In addition, we also provide
the PCTK python package to ease the task of handling and
processing simulation outputs and to easily create summary plots
and 3D rendered figures.
We show added functionalities that enable PhysiBoSS 2.0 to

study disease mechanisms that cause malfunctions in persona-
lised models while being flexible to handle many different models
and consistent with the results of the former PhysiBoSS. As a
showcase example, we have here presented a drug screening
study that uncovered synergies between drugs and heterogene-
ities in the cell population and that expands our work done on
prostate Boolean models31. We have presented drug screening
studies that could mimic, albeit simplistically, in vitro spheroid
experiments and have validated some of them using real-time cell
survival assay data. Implicitly, this work also showcases the
flexibility of PhysiBoSS 2.0 to run with any user-provided Boolean
model in MaBoSS or SBML-qual format, as opposed to the original
PhysiBoSS.
Additionally, PhysiBoSS 2.0 allows the simulation of two

potential causes of tumoural heterogeneity: the uneven drug
penetration in the tumour caused by the microenvironment and
the different genetic backgrounds of the tumour cells. The study
of this kind of heterogeneities is needed to have real-size digital
twins20 that allow for the understanding of the mechanisms

behind drug treatment evasion. Current approaches to predict
drug synergies do not consider the complexity and heterogeneity
typically found in a tumour, even though it is known that these
greatly affect the drug effectiveness41–43.
As drug administrations are never completely homogeneous

but rather occur from the tumour surroundings or from specific
points in the tumour environment, such as blood vessels, we will
continue studying in upcoming works the growth heterogeneities
and the apparent shielding effect that cells from the outer layers
can have on other cells from the inner layers to deliver a realistic
digital twin of drug treatment. With these added capabilities,
PhysiBoSS 2.0 takes important steps towards having truly
personalised digital twins that could be used for realistic clinical
trials of drug treatments and effective drug synergies. We are
currently working on expanding this tool to include the
extracellular matrix and its interactions with the cells28, blood
vessels and their vascularisation and complex three-dimensional
architectures taken from spatial omics of patients. Additionally, we
are also considering expanding this work with the recent inclusion
of PK/PD models in PhysiCell44.
Altogether, the new design and implementation allows

PhysiBoSS 2.0 to be model-agnostic and easily customisable by
users and provides a simple framework of custom modules and
custom settings to use with any Boolean model of interest in
MaBoSS or SBML-qual format. We have made efforts to provide
full accessibility to PhysiBoSS 2.0 code as well as to several
accompanying interoperable tools that make the full software
bundle reusable and expansible at https://github.com/PhysiBoSS/.

METHODS
Boolean models
In this work, we have used different Boolean models. The first
model is focused on the effect of TNF presence on cell fate
decisions, was used previously in PhysiBoSS 1.0 and is an
extension of a published Boolean model of cellular fates3. It has
31 total nodes, 25 internal nodes, 3 input nodes (TNF, Tumour
Necrosis Factor Receptor; FADD, FAS-associated death domain
protein; FASLG, Tumour Necrosis Factor Ligand Superfamily
Member 6) and 3 output nodes (Survival, Non-Apoptotic Cell Death
(NonACD), Apoptosis). The second model is a general model of
prostate cancer45 that was used to identify potential drug targets
in prostate cancer that were personalised to patients and cell lines
using different omic datasets31. The model includes a total of 133
nodes of which 9 correspond to input nodes and 6 to output
nodes. The personalised version of the model includes six prostate
cancer cell lines (LNCaP46, 22Rv147, BPH148, DU14549, PC350 and
VCaP51), the results here presented were obtained using LNCaP.
All the models are available in the dedicated repository: https://
github.com/PhysiBoSS/Boolean-models.

Personalisation of Boolean models
Boolean models can be used to simulate the effect of therapeutic
interventions and predict the expected efficacy of candidate drugs
on different genetic and environmental backgrounds by using our
PROFILE_v2 methodology31. Herein, the prostate Boolean model
was tailored to different datasets using PROFILE_v2 methodology
to obtain personalised models that capture the particularities of a
set of patients14 and of cell lines15. Proteomics, transcriptomics,
mutations and copy number alteration (CNA) data can be used to
modify different variables of the MaBoSS framework, such as node
activity status, transition rates and initial conditions. The resulting
ensemble of models is a set of personalised variants of the original
model that can show great phenotypic differences. Different
strategies (use of a given data type to modify a given MaBoSS
variable) can be tested to find the combination that better
correlates to a given clinical or otherwise descriptive data. In the
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present case, prostate-cell-line-specific models were built using
mutations, CNA and RNA expression data. More details on the
PROFILE methodology can be found in its own works14,31 and its
dedicated GitHub repository: https://github.com/PhysiBoSS/
PROFILE_v2. Note that apart from using omics data to personalise
the Boolean model, PhysiBoSS 2.0 can also include cell-line-
specific phenotypic data, for instance doubling times, to tailor the
simulations to a desired behaviour (Supplementary Section 1.5).

Simulating drug inhibition synergies in the prostate model
In PhysiBoSS 2.0, diffusing drugs in the microenvironment target
and inhibit specific input nodes in the Boolean model within the
individual cell agents. As modellers, the goal is to identify drugs
that target candidate nodes and specific treatment strategies that
together might be relevant in producing desired therapeutic
outcomes such as increased apoptosis or reduced proliferation. To
illustrate how PhysiBoSS 2.0 can be used to conduct in silico drug
screening experiments, we select a list of target nodes from31 that
have yielded exciting results using prostate Boolean models.
Suitable drugs are then identified using the DrugBank database52

and matched with their availability on the Genomics of Drug
Sensitivity in Cancer (GDSC) database53. The drug-target pairs of
interest for LNCaP can be found in Table 2.
We then integrate the estimated dose–response curves (see

section “Estimation of drug-response for single and double drug
studies”) into PhysiBoSS 2.0 to model the effect that the local
concentration of a drug in the nearby surroundings of a cell has
on the intracellular signalling model. Specifically, a cell agent is
informed of the drug concentration for each simulated substrate
at its nearest voxel. Then, the corresponding target node is
inhibited with a probability calculated based on the dose-
response curve for the selected drugs (Table 2). The probability
of inhibiting a node in a given cell is equal to 1− f([X]i) where [X]i
is the concentration of the drug in voxel i and f is the normalised
dose-response fitted function.
We simulated the inhibition of six nodes of interest on the

LNCaP model using PhysiBoSS 2.0. MaBoSS, integrated into
PhysiBoSS 2.0, can perform simulations changing the proportion
of activated and inhibited status of a given node. For instance, out
of 5000 trajectories of the Gillespie algorithm54, MaBoSS can
simulate 70% of them with an activated AKT and 30% with an
inhibited AKT node. Then, the phenotypes’ probabilities for the
5000 trajectories are averaged and these are considered to be
representative of a model with a drug that reduces the activity of
AKT by 30%.
Using PhysiBoSS 2.0, we simulated the growth of a three-

dimensional spheroid with 1138 initial cells of LNCaP prostate cell
line for 7 days under different conditions that include the spheroid
being treated with six different drugs individually supplied (see
Table 2 as well as the spheroid’s growth without any drug,
considered as the wild type (WT) conditions. Furthermore, we
tested five different drug concentrations for each drug corre-
sponding to the IC10, IC30, IC50, IC70 and IC90. In all the in silico
experiments, drugs diffused uniformly from the simulation

boundaries. Finally, to validate the results, we took a snapshot
of the current state of the simulation every 240min to create a
growth curve for each condition and replicate (Supplementary Fig.
8). The median area under the curve (AUC) for 10 replicates was
used to compare growth behaviours upon drug administration.
Based on these AUC we defined a Growth Index (GI) as follows:

GI ¼ log2
AUCðwithdrugÞ

AUCðwithoutdrugÞ (1)

A GI below zero indicates a reduction in growth upon drug
treatment with respect to the untreated condition while a value
over zero indicates an increase in growth.

Estimation of drug-response for single and double drug
studies
The effect of a drug on the cell depends on its concentration and
provides insight into multiple drug characteristics such as potency
or efficacy55. Usually, this relation exhibited is non-linear and thus,
sigmoidal-shaped functions such as the Hill equation are used to
model the dose-response. Herein, we have used standard
pharmacodynamics methods to model the effect of various
concentrations of drugs on cell line growth. For this purpose,
we used GDSC dose-response data (see Table 2) to fit the raw cell
viability experiments using a multi-level fixed effect model38

implemented in the gdscIC50 R package (https://github.com/
CancerRxGene/gdscIC50). As a result, we obtained a specific
sigmoidal dose-response curve for each drug and cell line pair (see
Supplementary Fig. 7).
Drug synergies were studied using the Bliss independence

model56, which is based on the idea that the two studied
compounds are acting independently from each other, meaning
that they are non-interacting57. Based on the effects of every
single drug, a reference model was calculated as follows:

ÊXY ¼ EX þ EY � EX � EY (2)

where ÊXY is the predicted combined effect of how the two drugs
X and Y act if no synergy or antagonism exist; whereas 0 ≤ EX,
EY ≤ 1 are the single drug effects of X and Y, respectively. If the
measured combined drug effect observed is higher than the
predicted effect ÊXY , synergy is declared and antagonism is
concluded otherwise. This can also be expressed using the
Combination Index (CI)58 which is calculated as follows:

CI ¼ ÊXY
EXY

(3)

where EXY is the inhibition resulting from the double drug
simulations. A Combination Index (CI) below 1 indicates synergy
while a value above 1 indicates antagonism.

Computational resources
All the simulations done in this paper were performed in the
MareNostrum 4 supercomputer, located at the Barcelona Super-
computing Center in Spain. Each node contains two Intel Xeon
Platinum 8160, each one with 24 processors running at 2.1 GHz

Table 3. Codes related with PhysiBoSS with their maintainers and repositories.

Name Repository Maintainer

PhysiCell https://github.com/MathCancer/PhysiCell Indiana University

MaBoSS https://github.com/sysbio-curie/MaBoSS-env-2.0 Institut Curie

PhysiBoSS 1.0 https://github.com/PhysiBoSS/PhysiBoSSv1 Deprecated

PhysiBoSS 2.0 https://github.com/PhysiBoSS/PhysiBoSS BSC, Institut Curie

BioFVM https://github.com/MathCancer/BioFVM Deprecated

PCTK https://github.com/PhysiBoSS/pctk BSC
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and 33 MB L3 Cache. Memory is organised in two NUMA sockets
with a total amount of 96GB per node. Individual simulations were
done using all the 48 CPUs of one compute node. Model
exploration performed using EMEWS was carried out using 10
nodes allocating three instances per node and assigning 16 CPUs
per simulation instance. Results were analysed using custom
scripts written in Python (3.9) that used the PCTK module (see
“Handling and processing simulation outputs” in the “Results”
section). All the software tools and their repositories used in the
present work are listed in Supplementary Table 2 and the ones
related to PhysiBoSS in Table 3.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
No new experimental data was generated as part of this study. All the models used in
this study are available at https://github.com/PhysiBoSS/Boolean-models. The model
used to simulate TNF dosage is an extension from the one from ref. 3, and the models
of prostate cancer come from ref. 31. The drug dosage experiments were reported in
ref. 31.

CODE AVAILABILITY
The codes used in this study are available at https://github.com/PhysiBoSS. The code
for PhysiBoSS 2.0 can be found in https://github.com/PhysiBoSS/PhysiBoSS. The
personalisation methodology is available at https://github.com/PhysiBoSS/
PROFILE_v2. The PhysiCell ToolKit (PCTK) can be found in https://github.com/
PhysiBoSS/pctk. The gdscIC50 R package used to fit sigmoid curves on the cell lines
response to drugs is available in its own repository: https://github.com/
CancerRxGene/gdscIC50. Other codes of reference for this work can be found in
Table 3 and Supplementary Table 2.
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