
ANNÉE 2012
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Résumé en français

0.1 Introduction

La biologie est aujourd’hui confrontée à une situation sans précédents. Les nouvelles
techniques expérimentales en biologie moléculaire, biophysique, biochimie, produisent une
avalanche de données qui ont besoin d’être traitées, analysées, et comprises. La modélisation
devient une partie du raisonnement biologique. Cependant, dans le but d’être détaillée,
la taille des modèles doit pouvoir augmenter sans limites. Par exemple, pour pouvoir
représenter les processus d’une seule voie de signalisation, un modélisateur peut utiliser des
centaines, voire des milliers de réactions biochimiques, produisant un nombre équivalent
d’équations différentielles. Une cellule utilise des centaines de voies de signalisation qui in-
teragissent entre elles. Des systèmes aussi larges ne sont pas seulement difficiles à analyser,
mais également pratiquement impossible à identifier à partir des données expérimentales.
Une stratégie pour surmonter une telle complexité est d’utiliser des abstractions, c’est
à dire des versions réduites des modèles qui peuvent reproduire avec suffisamment de
précision le comportement du modèle initial. Ces modèles simplifiés peuvent être de différents
types. Si le modèle initial est un système d’équations différentielles ordinaires (EDOs), l’ab-
straction peut être un plus petit système d’EDOs, ou un modèle hybride combinant des
variables continues et discrètes, ou un modèle totalement discret (comme par exemple
un réseau booléen). Toutes ces descriptions sont actuellement utilisées en biologie com-
putationnelle. Cependant, il nous manque des méthodes générales nous permettant de
réduire ou de convertir un type de modèle en un autre type, automatiquement. Comme
les paramètres des modèles sont rarement disponibles avec une précision suffisante, nous
avons besoin de méthodes permettant de gérer des paramètres incertains.

Le travail présenté dans cette thèse a été motivé par cette situation en biologie com-
putationnelle.

Nous discutons une classe de méthodes semi-formelles permettant de réduire des grands
réseaux de réactions biochimiques. Dans le but de surmonter l’incertitude des paramètres,
nous avons basé les méthodes de réduction sur les relations de dominance entre les paramètres
et/ou les taux de réactions. Ces méthodes exploitent le caractère multi-échelles des réseaux
biochimiques, c’est à dire leur propriété d’avoir de nombreuses échelles de concentra-
tion et de temps bien séparées. Dans les réseaux multi-échelles, les paramètres peuvent
être remplacés par des ordres de grandeur, qui sont beaucoup plus simples à obtenir
que les valeurs précises de paramètres. De plus, la dynamique dissipative des réseaux de
réactions avec de nombreuses échelles de temps bien séparées peut être décrite comme une
séquence d’équilibrations successives de différents sous-ensembles de variables du système.
Les systèmes polynomiaux avec échelles séparées sont équilibrés quand au moins deux
termes, de signes opposés, ont le même ordre de grandeur et dominent les autres. Ces
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6 Résumé en français

équilibrations et les systèmes dynamiques tronqués correspondants, obtenues en éliminant
les termes dominés, trouvent une formulation naturelle dans l’analyse tropicale et peuvent
être utilisées pour la réduction de modèles.

Grâce à la réduction de modèles nous transformons des systèmes d’équations différentielles
en des systèmes d’équations différentielles avec moins de variables et de paramètres. Ces
simplifications nous apportent des approximations précises globalement, c’est à dire pour
des grands domaines de valeurs de paramètres et pour tous temps. Localement, c’est à
dire pour des domaines restreins de valeurs de paramètres et pour intervalles de temps
finis, des modèles plus simples que le modèle simplifié global peuvent être trouvés. Cette
situation conduit à une description hybride régulière par morceaux de la dynamique du
système, dans laquelle une trajectoire régulière générée par un modèle complexe est ap-
proximée par une séquence de morceaux réguliers générés par des EDOs simplifiés, mais
changeantes. Il y a des manières simples d’hybridiser un réseau de réactions biochimiques,
consistant à remplacer les fonctions sigmöıdes apparaissant dans la définition des taux de
réactions par des fonctions de type “marche d’escalier”, ou par des fonctions linéaires par
morceaux. Une autre solution pour hybridiser est fournie par l’analyse tropicale sous la
forme du principe de correspondance de Litvinov-Maslov. Cette idée peut être appliquée à
des systèmes d’équations différentielles polynomiaux ou rationnels (résultant en biochimie
de la loi d’action de masse) et consiste à approximer les fonctions polynomiales par des
polynômes max-plus.

La réduction de modèles et l’hybridisation trouvent des applications dans le contexte
des modèles du cycle cellulaire en biologie computationnelle. Le cycle cellulaire régule la
prolifération cellulaire par l’activité cyclique de protéines appelées cyclines. Les modifi-
cations de ces protéines peuvent intervenir de manière abrupte, entrainant des change-
ments de régime dynamique qui sont bien décrits par des changements de modes dans
des modèles hybrides réguliers par morceaux. D’un point de vue dynamique, les modèles
du cycle cellulaire prédisent des oscillations singulières, alternant entre parties rapides et
lents. En réduisant ces modèles, nous pouvons mettre en valeur les variables essentielles et
les paramètres des modèles du cycle cellulaire et, dans certains cas, calculer les attracteurs
périodiques de manière analytique.
La structure de ce manuscrit est la suivante :

Dans le chapitre 1, nous proposons des méthodes numériques permettant d’identifier un
modèle hybride à partir de séries temporelles. Nous utilisons cette méthode pour obtenir
des approximations hybrides de modèles réguliers existants du cycle cellulaire.

Dans le chapitre 2, nous passons en revue les méthodes de réduction de modèle. Ces
nouveaux résultats consistent à utiliser l’analyse et la géométrie tropicale dans le but
d’unifier les approches qui sont appliquées aux modèles de réactions biochimiques avec
séparation d’échelles.

Dans le chapitre 3, nous discutons la méthode de tropicalisation et trouvons des esti-
mations justifiant son applicabilité.

Dans le chapitre 4, nous discutons la dynamique d’oscillateurs singuliers du cycle cel-
lulaire, justifiant rigoureusement leur réduction en système de dimension moindres et leur
hybridisation.
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0.2 Modèles hybrides pour les réseaux de réactions biochim-
iques

Les systèmes hybrides sont beaucoup utilisés en théorie de contrôle automatique pour
gérer des situations où des machines à nombre d’états finis sont couplées avec des mécanismes
qui peuvent être modélisés par des équations différentielles [92]. Dans le cas des robots,
contrôleurs de centrales, disques durs d’ordinateurs, systèmes automatiques routiers, systèmes
de contrôle de vol en aéronautique, etc. Le comportement général de tels systèmes est
de passer d’un type de dynamique régulière (mode) décrite par un système d’équations
différentielles à une autre dynamique régulière (mode) décrite par un autre système d’équations
différentielles. La commande de ces modes peut être accomplie en changeant une ou
plusieurs variables discrètes. Le changement de mode peut être accompagné ou non par des
sauts (discontinuités) des trajectoires. Suivant comment les variables discrètes sont mod-
ifiées, il peut y avoir plusieurs types de systèmes hybrides : systèmes commutés [124], auto-
mates différentiels multivalués [137], systèmes réguliers par morceaux [40]. Notons que dans
le dernier cas, le changement de mode intervient quand la trajectoire atteint des variétés
régulières. Dans ces exemples, le changement de variables discrètes et l’évolution des vari-
ables continues sont déterministes. La classe des systèmes hybrides peut être étendue en
considérant des dynamiques stochastiques pour les variables discrètes ou pour les vari-
ables continues, produisant des processus déterministes par morceaux, des diffusions com-
mutées, ou des diffusions avec sauts [114, 27, 26, 125, 16]. Des réseaux de Petri hybrides,
différentiels ou stochastiques apportent des descriptions dynamiques équivalentes et ont
aussi été utilisés dans ce contexte. [32]

L’utilité des modèles hybrides en biologie peut être justifiée par le caractère multi-
échelle temporel et spatial des processus biologiques, et par le besoin de combiner des ap-
proches qualitatives et quantitatives pour étudier la dynamique des réseaux de régulation
cellulaire. De plus, la modélisation hybride offre un bon compromis entre une description
réaliste des mécanismes de régulation et la possibilité de tester le modèle en termes d’at-
teignabilité d’états et de logique temporelle [85, 96]. La dynamique par seuils des réseaux
de régulation génétique [10, 115] ou des systèmes de signalisation [149] a été auparavant
décrite par des modèles linéaires par morceaux ou affines par morceaux. Ces modèles ont
une structure relativement simple et peuvent, dans certains cas, être identifiés á partir
des données [108, 35]. Des méthodes ont été proposées pour calculer les ensembles d’états
atteignables pour les modèles affines par morceaux [12].

Parmi les applications de la modélisation hybride, une des plus importantes est la
régulation du cycle cellulaire. La machinerie du cycle cellulaire, entrainant la division et la
prolifération cellulaire, combine une croissance lente, une réorganisation spatio-temporelle
de la cellule, et des changements rapides des concentrations de protéines régulatrices in-
duits par des modifications post-translationelles. La progression dans le cycle cellulaire est
une séquence bien définie d’étapes, séparées par des points de contrôles des transitions.
Ceci justifie l’approche de modélisation hybride, comme le modèle hybride du cycle cel-
lulaire de Tyson et collab. [126]. Ce modèle est basé sur un automate booléen dont les
transitions discrètes déclenchent des changements dans les paramètres cinétiques d’un en-
semble d’équations différentielles. Le modèle hybride proposé par Tyson et collab. a été
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utilisé pour reproduire des données de flux cytométriques.

Bien que suffisants pour certaines applications comme les réseaux de gènes, les modèles
affines par morceaux sont moins adaptés pour décrire les phénomènes où la dynamique
entre deux événements discrets successifs est fortement non-linéaire. Un exemple typique
d’un tel phénomène est la machinerie du cycle cellulaire. La dégradation protéolytique
des cyclines est activée rapidement par les complexes kinases cyclines-dépendants mais
entre deux commutations successives les complexes ont une dynamique non-linéaire im-
pliquant plusieurs rétroactions positives (processus-auto catalytiques) et négatives. Ces
processus non-linéaires contribuent à la robustesse du mécanisme. L’idée des systèmes
réguliers par morceaux survient naturellement dans le contexte de systèmes biochimiques
avec de multiples échelles de temps séparées. La dynamique dissipative d’un grand modèle
multi-échelles peut être réduite à celle d’un modèle plus simple, appelé le sous système
dominant [112, 58, 57]. Pour les modèles non linéaires, le sous système dominant (qui peut
être assimilé à un mode) est seulement constant par morceaux et peut changer plusieurs
fois pendant la dynamique. Les méthodes de réduction de modèle proposées dans [57, 112]
génèrent des sous-systèmes dominants pour monômes multivariés des concentrations de
variables, comme les bien connus S-Systèmes [120]. En effet, quand on les applique à des
modèles utilisant la loi d’action de masse, les quasi-états stables et les approximations
des quasi-équilibres [58] nous amènent à regrouper plusieurs réactions et espèces effectives
dont les taux résultent de la résolution de systèmes d’équations polynomiales. En général,
ces polynômes contiennent peu des termes (fewnomials). Les solutions de tels systèmes
sont très simplifiées dans le cas d’une séparation totale des termes non constants dans les
fewnomials et produisent des taux monomiaux. Les taux d’une même réaction peuvent
être représentés par différents monômes dans différents sous systèmes dominants (modes).
Par exemple, le taux d’un mécanisme de Michaelis-Menten dépend linéairement de la con-
centration du substrat pour des faibles concentrations et est constant à la saturation. Nous
nous attendons à ce que des taux de lois plus générales [84] puissent être traités similaire-
ment par notre approche.

Dans ce chapitre nous nous proposons une heuristique pour construire des modes appro-
priés des modèles réguliers par morceaux adéquats en utilisant une approche descendante.
Puis, nous montrons comment les paramètres du modèle hybride peuvent être identifiés à
partir des données ou des trajectoires produites par des modèles réguliers existants, mais
plus complexes. Les détails de ce travail sont présentés dans le chapitre 1.

Les résultats que nous présentons ici sont une preuve de principe que les modèles hy-
brides réguliers par morceaux peuvent être construits avec une heuristique simple à partir
d’informations basique sur les interactions biochimiques. Utiliser cette classe de modèles
hybrides au lieu d’approximations linéaires par morceaux nous permet, dans beaucoup
de situations, d’obtenir un meilleur équilibre entre interactions discrètes et régulières.
L’algorithme d’identification proposé dans ce travail combine la localisation statique des
événements, l’identification des modes par une méthode de recuit simulé, et l’identifica-
tion des paramètres de contrôle des modes par localisation dynamique. L’étape la plus
difficile de cet algorithme est le recuit simulé. De plus, pour des grands modèles, nous
nous attendons à obtenir plusieurs solutions pour les paramètres de contrôle des modes.
Nous améliorons actuellement cet algorithme de manière à résoudre ces situations. Un
meilleur choix des modes dicté par les techniques de réduction de modèles pourrait réduire
le temps du recuit simulé. Egalement, nous étudions l’utilisation des fonctions de locali-
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sation d’événements qui sont linéaires dans le logarithme des variables continues. D’après
les idées de l’introduction, ces fonctions de localisation non linéaires pourront indiquer les
changements des monômes dominants dans les fonctions de taux de manière plus précises
que les fonctions de localisation linéaires. De plus, ils peuvent être obtenus directement à
partir du modèle régulier initial sans le besoin de résoudre des fonctions de localisation
dynamiques (possiblement non déterminées). Des techniques de segmentations améliorées
sont nécessaires pour de futures applications de cet algorithme directement à partir de
données.

Dans le futur nous appliquerons cette heuristique et l’algorithme d’ajustement (fitting)
pour modéliser des situations complexes où des voies de signalisation interagissent avec le
cycle cellulaire eucaryote. Les modèles hybrides obtenus seront aussi utilisé pour rechercher
les propriétés émergentes des réseaux de régulations comme la viabilité et la robustesse.

0.3 Réduction de modèles pour les modèles de biologie com-
putationnelle

Pendant les dernières décennies, les biologistes ont identifié un grand nombre de com-
posants moléculaires et de mécanismes régulateurs sous-jacents au contrôle des fonctions
cellulaires. Les cellules intègrent des signaux externes via les mécanismes sophistiqués des
voies de transduction, affectant in fine la régulation de l’expression des gènes, y compris
ceux codant pour des composants de la signalisation. Les fonctions métaboliques sont
soutenues et contrôlées par des systèmes biochimiques complexes, impliquant des gènes,
des enzymes et des métabolites. Les régulations génétiques résultent des effets coordonnés
de beaucoup de gènes interagissant mutuellement. Ces interactions impliquent beaucoup
d’acteurs moléculaires, incluant des protéines et des ARNs régulateurs, et définissent des
grands réseaux de régulation.

Les modèles dynamiques actuels des processus moléculaires cellulaires sont des réseaux
de petite taille. Ces petits modèles ne prennent pas en compte les spécificités des mécanismes
régulateurs. Des nouvelles méthodes sont nécessaires, permettant de réconcilier les petits
modèles dynamiques avec des grandes, mais statiques, architectures de réseaux. L’obstacle
principal pour augmenter la taille des réseaux dynamiques est l’information incomplète
sur les paramètres et sur les détails mécanistiques des interactions. Les mesures biochim-
iques fournissent des valeurs de paramètres “in vitro”. Les valeurs “in vivo” des paramètres
dépendent de l’encombrement et de l’hétérogénéité du milieu intracellulaire, et peuvent
être plusieurs ordres de magnitude différents de ce qui est mesuré in vitro. De plus, con-
struire des modèles a partir de données pose des problèmes de non-identifiabilité et de
sur-ajustement (overfitting) des paramètres. La réduction de modèle est donc une étape
inévitable dans l’étude des grands réseaux, permettant d’extraire les fonctionnalités prin-
cipales du modèle, qui peuvent être identifiés à partir des données. La réduction de modèle
en biologie computationnelle doit avoir quelques caractéristiques spécifiques.

Premièrement, la réduction de modèles doit permettre de répondre au problème des
paramètres incomplets ou imprécis. Une certaine classe de méthodes de réduction n’u-
tilise pas les valeurs des paramètres et respecte automatiquement cette propriété. Dans
les réseaux biochimiques, le nombre d’espèces chimiques nécessaires pour préciser un
mécanisme de réaction peut crôıtre de manière exponentielle, due à de nombreuses pos-
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sibilités d’interactions entre molécules et à la possibilité de sites d’interaction multiples.
Les méthodes de réduction par aggregation (lumping) [15, 25] diminuent le nombre de
micro-états et évitent l’explosion combinatoire dans la description et l’analyse de grands
modèles de signalisation. Une technique similaire appelée modélisation à base de règles est
utilisée pour organiser rationnellement les complexes supramoléculaires et leurs interac-
tions. D’autres techniques, indépendantes des valeurs des paramètres sont des méthodes
graphiques formalisant la suppression de nœuds et les opérations d’aggrégation dans les
réseaux biochimiques [42], regroupant des métabolites en des réseaux métaboliques de
grande taille [106, 72], parfois basées sur recherches extensives dans l’ensemble de tous les
regroupements possibles [34]. Enfin, des méthodes de réduction qualitative ont été utilisées
pour simplifier des grands réseaux de régulation booléens, supprimant de manière adéquate
des nœuds et définissant des sous-approximations de la dynamique [99, 100].

Deuxièmement, les processus biochimiques gouvernant la dynamique des réseaux im-
pliquent des nombreuses échelles de temps. Par exemple, le changement d’expression des
gènes peut prendre des heures, alors que la formation des complexes de protéines est de
l’ordre de la seconde et que les modifications post-translationelles prennent des minutes.
La demi-vie des protéines peut varier de plusieurs minutes à plusieurs jours. La réduction
de modèles peut bénéficier fortement du caractère multi-échelle des réseaux. La dynamique
asymptotique des réseaux avec des processus rapides et lents peut être fortement simplifiée
en utilisant des idées comme les variétés invariantes (IM) ou les approximations par moyen-
nisation.

Les méthodes de calcul numériques de variétés invariantes visent à trouver une IM
de faible dimension, contenant la dynamique asymptotique [51, 52, 116]. La méthode de
calcul de perturbations singulières (CSP) [80, 19] vise à trouver l’IM ainsi que la géométrie
de la fibration définie par les directions. Les variétés invariantes peuvent être calculées par
de nombreuses autres méthodes [53, 55, 116, 74, 77].

Les méthodes pour le calcul des “premières approximations” des IM lentes sont très
populaires. L’approximation classique des états quasi-stationnaires (QSS) a été proposée
par [13] et a été élaborée comme un outil important pour l’analyse des mécanismes
cinétiques des réactions chimiques [123, 20, 66]. L’approximation QSS classique est jus-
tifiée pour les concentrations relativement faibles de certains réactifs (radicaux, concentra-
tions d’enzymes et de complexes substrats-enzymes, ou les quantités de centres actifs sur
la surface catalysatrice) [6, 122, 148]. L’approximation par quasi-équilibre (QE) a deux
formulations basiques : l’approche thermodynamique, basée sur le maximum d’entropie
conditionnelle (ou le minimum d’énergie libre conditionnelle), ou la formulation cinétique,
basée sur l’équilibration de réactions réversibles rapides. Le premier usage du principe de
maximum d’entropie remonte à Gibbs [43]. Des corrections à l’approximation par quasi-
équilibre avec comme applications la cinétique physique ou chimique ont été développées
par [54, 53]. Un problème important, toujours non résolu, de ces deux approximations est
la détection d’espèces QSS et de réactions en QE sans appliquer toute la machinerie de
l’IM ou des méthodes CSP. En effet, toutes les réactions avec des grandes constantes ne
sont pas en quasi-équilibre, et il n’y a pas de méthode simple pour trouver les espèces
quasi-stationnaires s’il n’y a pas d’indices comme l’existence d’invariants à faible valeur
(comme la concentration totale d’une enzyme). La méthode de la variété intrinsèque de
faible dimension (ILDM, [89, 18]) fournit une approximation de la variété invariante de
faible dimension et peut être considérée comme une première étape de la méthode CSP [73].
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Une autre méthode permettant de simplifier des dynamiques multi-échelles est la
moyennisation. Cette idée remonte au traitement perturbatif du problème des trois corps
de Poincaré pour la mécanique céleste [107], développé davantage en mécanique classique
par d’autres auteurs [7, 88], et aussi connu comme approximation adiabatique ou approx-
imation Born-Oppenheimer en mécanique quantique [94]. De manière générale, la moyen-
nisation peut être appliquée quand certaines variables d’échelles fines (fine-scales) oscillent
rapidement. Alors, la dynamique des variables lentes, grossières (coarse-scale), peut être
obtenue en moyennisant sur une échelle de temps bien plus grande que la période des oscil-
lations rapides. La façon d’effectuer la moyennisation dépend de la structure du système,
principalement de la définition des variables fines et grossières [14, 8, 3, 121, 2, 47, 127].

Enfin, le caractère multi-échelle ne s’applique pas uniquement aux échelles de temps,
mais de manière équivalente à l’abondance des différentes espèces dans ces réseaux. Le
nombre de copies d’ARNs messagers peut varier de quelques copies à des dizaines de
milliers, et l’éventail des concentrations dynamiques des protéines biologiques peut varier
jusqu’à cinq ordres de magnitude. De plus, la molécule d’ADN peut avoir une seule ou
plusieurs copies. Des petits nombres conduisent, directement ou indirectement, à l’expres-
sion stochastique des gènes (une espèce peut être stochastique même avec un grand nombre
de copies). En biologie computationnelle, la réduction de modèles doit donc s’appliquer
non seulement à des modèles déterministes, mais aussi à des modèles stochastiques et
hybrides. Le besoin de réduire des grands modèles stochastiques est crucial. En effet, les
algorithmes de simulation stochastiques (SSA [44, 45]) peuvent être très gourmands en
temps de calcul quand on les appliquent à grands modèles non réduits, même en excluant
l’analyse des trajectoires et l’identification des paramètres. Pour cette raison, un effort in-
tensif a été dédié à l’adaptation des idées principales utilisées pour la réduction de modèles
déterministes, à savoir le regroupement exact, les variétés invariantes, la quasistationarité,
le quasi-équilibre, la moyennisation, au cas des modèles stochastiques.

La réduction des modèles stochastiques à base de règles, basée sur une version af-
faiblie du critère d’aggregation exacte, a été proposée par [38] pour définir des espèces
abstraites ou des fragments stochastiques qui peuvent être utilisés pour des calculs sim-
plifiés. De manière plus générale, les modèles à base de règles permettent de surmonter la
complexité combinatoire dans les simulations stochastiques [30]. La performance des simu-
lateurs stochastiques de modèles à base de règles comme NFsim [130] est indépendante de
la taille du réseau. La réduction approximative du nombres d’états de chaines de Markov
décrivant les réseaux stochastiques a été proposés par [98].
A l’exception des méthodes paramètres-indépendantes, toutes les méthodes de réduction
de modèles décrites ci-dessus ont besoin d’une paramètrisation complète du modèle. C’est
un besoin rigoureux, et ne peut pas être simplement contourné. En effet, la réduction a une
validité locale. Les éléments définissant un modèle réduit, comme les variétés invariantes,
les espèces quasistationnaires et les réactions en quasi-équilibre dépendent des paramètres
locaux et aussi de la position dans l’espace des phases le long de la trajectoire. On s’attend
à ce que la réduction de modèles soit robuste, c’est à dire qu’un modèle réduit donné
fournisse une bonne approximation de la dynamique du modèle initial pour un large en-
semble de paramètres et de valeurs des variables. On peut constater que cette propriété
est satisfaite par les réseaux biochimiques avec des constantes bien séparées, car dans ce
cas les réseaux simplifiés dépendent des relations d’ordre parmi les modèles de paramètres
et non des valeurs précises de ces paramètres [56, 112, 103].
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Dans ce chapitre, nous allons revisiter les concepts fondamentaux de la réduction de
modèles à la lumière d’un nouveau cadre, qui devrait ammener, sur le long terme, à une
nouvelle génération d’outils de réduction satisfaisant tous les besoins spécifiques de la bi-
ologie computationnelle. Ce cadre est basé sur des idées d’analyse tropicale. Les détails de
cette partie sont présentés dans le chapitre 2.

Les techniques mathématiques décrites dans ce travail définissent les stratégies pour
l’étude de grands réseaux dynamiques en biologie computationnelle. Ces grands réseaux
sont nécessaires pour comprendre la dépendance du contexte, la spécialisation, ainsi que
les variations d’un individu à l’autre du comportement des cellules. L’accumulation des
base de données sur les intéractions moléculaires soutient l’idée que la cellule biologique
est un puzzle de réseaux et de voies, et qu’une fois ces voies regroupées dans une carte
cohérente, la physiologie de la cellule pourrait être révélée par une simulation numérique.
En réalité, confronter les réseaux biochimiques avec la vie réelle n’est pas un défi aisé. Les
techniques de réduction de modèles sont nécessaires pour nous rapprocher de cet objectif,
et ces méthodes peuvent révéler des fonctionnalités importantes de ces organisations com-
plexes.

Nos résultats sont basés sur les notions de limitation et de dominance entre les éléments
du système. Ces notions sont importantes pour comprendre les modèles dynamiques en
biologie computationnelle. Les fonctionnalités essentielles, critiques des systèmes avec de
nombreuses échelles de temps bien séparées peuvent être résumées par un sous-système
dominant réduit. Ce sous-système dominant dépend des relations d’ordre entre les paramètres
du modèle et des combinaisons des paramètres du modèle. Nous avons montré comment
calculer un tel sous-système dominant pour des réseaux linéaires et non-linéaires. L’in-
terprétation géométrique de ces concepts en terme de tropicalisation fournit un cadre
mathématique puissant, permettant d’identifier les variétés invariantes, les espèces qua-
sistationnaires et les réactions en quasi-équilibre. Nous avons aussi discuté comment la
réduction de modèles peut être appliquée pour les stratégies d’apprentissage de paramètres.

Des efforts supplémentaires sont nécessaires pour étendre la validité des idées mathématiques
et pour améliorer les algorithmes de réduction de modèles, et pour les implémenter dans
des outils de biologie computationnelle.

0.4 Principe d’équilibration tropicale pour les cinétiques chim-
iques

La biologie systémique développe des modèles biochimiques dynamiques de nombreux
processus cellulaires comme la signalisation, le métabolisme, et la régulation génétique.
Ces modèles peuvent reproduire les comportements spatio-temporels dynamiques com-
plexes observés dans les expériences de biologie moléculaire. Malgré leur comportement
complexe, les modèles dynamiques disponibles actuellement sont des approximations de
taille relativement petite, contenant uniquement des dizaines de paramètres et de vari-
ables. Cette taille modeste résulte d’une part du manque d’informations précises sur les
paramètres cinétiques des réactions biochimiques, et d’autre part des limitations dans les
méthodes d’identification de paramètres. D’autres limitations peuvent provenir de l’explo-
sion combinatoire des interactions entre molécules avec des modifications et des sites d’in-
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teraction multiples [29]. Ces petits modèles peuvent également être justifiés par le fait qu’il
faut trouver le niveau de complexité optimal pour capturer les fonctionnalités essentielles
du phénomène à étudier. La capacité de choisir les détails importants et d’omettre ceux
moins importants est une propriété importante de l’art de modéliser. Au delà de l’art du
modélisateur, le succès des modèles simples provient d’une propriété importante des grands
systèmes dynamiques. La dynamique de grands modèles dissipatifs multi-échelles peut être
réduite à celle de modèles plus simples, appelés sous-systèmes dominants [112, 58, 57]. Les
sous-systèmes dominants contiennent moins de paramètres et sont plus faciles à analyser.
Le choix du sous-système dominant est dicté par la comparaison entre les échelles de temps
du grand modèle. Parmi les conditions amenant à la dominance et permettant de générer
des modèles réduits, les plus importantes sont les approximations de quasi-équilibre (QE)
et de quasistationnarité (QSS) [58]. Dans les systèmes non-linéaires, les échelles de temps
et avec elles les sous-systèmes dominants, peuvent changer durant la dynamique et subir
des transitions plus ou moins brusques. L’existence de ces transitions suggère qu’un cadre
hybride, discret/continu est bien adapté pour la description de la dynamique de grands
systèmes non-linéaires multi-échelles de temps [27, 102, 103].

La notion de dominance peut être exploitée pour obtenir des modèles plus simples
à partir de grand modèles avec des échelles de temps multiples et séparées, et pour as-
sembler ces modèles dans des modèles hybrides. Cette notion est asymptotique, et un
cadre mathématique naturel pour capturer les multiples relations asymptotiques est la
géométrie tropicale. Motivée par des applications en physique mathématique [87], des
systèmes d’équations polynomiales [133], etc., la géométrie tropicale utilise un change-
ment d’échelle pour transformer des systèmes non-linéaires en des systèmes discontinus
linéaires par morceaux. Plus précisement, la tropicalisation consiste à remplacer une fonc-
tion polynomiale par le polynôme max-plus correspondant. La tropicalisation est une pro-
priété robuste du système, qui reste constante pour un grand domaine de valeurs des
paramètres. Elle peut révéler des fonctionnalités qualitatives stables de la dynamique du
système, comme certains types d’attracteurs. L’utilisation de la tropicalisation pour anal-
yser des modèles de grands systèmes pourrait donc être une solution pleine de promesses
pour le problème du manque d’information sur les paramètres cinétiques. Dans le chapitre
3, nous fournissons des justifications mathématiques rigoureuses pour l’idée de tropicali-
sation.

0.5 Deux modèles paradigmatiques du cycle cellulaire et
leurs tropicalisations

Les deux modèles paradigmatiques du cycle cellulaire présentés datent tous les deux
du début des années 1990.

Le premier est le modèle du cycle cellulaire proposé par Tyson et collab. [140]. Ce
modèle reproduit l’interaction entre la cycline et la kinase cycline-dépendante Cdc2 (for-
mant un complexe appelé facteur promoteur de maturation, MPF) durant la progression du
cycle cellulaire. Ce modèle démontre que ce système biochimique peut fonctionner comme
un oscillateur, ou converger vers un état stable avec des grandes concentrations de MPF, ou
fonctionner comme un commutateur excitable qui atteint des grandes concentrations tran-
sitoires de MPF avant de revenir à un état basal non-excité. Les trois régimes peuvent être
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associés à la division rapide des jeunes embryons, l’arrêt en métaphase des œufs non fer-
tilisés, et la division contrôlée par la croissance des cellules somatiques, respectivement. Ce
modèle prend en compte l’activité auto-catalytique du facteur MPF (rétrocontrôle positif).

Le second modèle, proposé par Goldbeter et collab. [48], reproduit également un os-
cillateur mitotique minimal. Cet oscillateur est basé sur une cascade de modifications
post-transcriptionelles qui modulent l’activité de la kinase Cdc2. Au fur et à mesure que
la cycline augmente, elle active le complexe MPF, qui déclenche la dégradation de la cy-
cline et la mitose. La dégradation de la cycline n’est pas déclenchée directement par MPF,
mais par une troisième variable (une protéase de cycline), activée par MPF. Dans le modèle
original la cinétique des modifications post-translationelles est décrite par des équations de
Michaelis-Menten. De plus, pour gérer les situations avec une grande quantité d’enzyme,
l’auteur représente la dépendance du paramètre VMax sur la concentration de l’enzyme
par une autre fonction de Michaelis-Menten. Le travail sur ces modèles est présenté dans
le chapitre 4.

Nous montrons que les idées tropicales peuvent être utilisées pour réduire et hybridiser
des systèmes dynamiques polynomiaux ou rationnels résultant de la modélisation de la
machinerie moléculaire du cycle cellulaire. L’idée principale consiste à garder seulement
le terme monomial dominant dans la partie droite des équations différentielles ordinaires.
Suivant la position dans l’espace des phases, il faut garder un, deux, ou plusieurs de ces
termes. L’endroit où deux ou plusieurs termes monomiaux sont égaux définit ce qu’on
appelle la variété tropicale. L’approximation à un seul terme est valable loin de la variété
tropicale, alors que près de la variété tropicale, plusieurs termes dominants de signe op-
posés peuvent s’équilibrer entre eux. Ces “équilibrations tropicales” des termes dominants
ralentissent la dynamique et produisent des variétés invariantes attractives.

Les applications possibles de ces méthodes sont multiples. En général, cette méthode
peut être utilisée pour obtenir des modèles simplifiés. Dans le cas du modèle de Tyson, nous
sommes partis d’un modèle à cinq variables, qui a été réduit à deux variables et hybridisé.
Les modes du modèle hybride ont la structure simple d’équations différentielles monomi-
ales ou sont définies par des équations différentielles algébriques. Deux méthodes générales,
que nous appelons tropicalisation complète et tropicalisation à deux termes, fournissent les
descriptions des modes et des changements de modes. Cependant, ces procédures générales
peuvent amener à des mauvaises approximations quand le modèle complet ne satisfait pas
globalement la propriété de permanence, utilisée auparavant en écologie (modèle Lotka-
Volterra) ou en théories de la co-évolution (réplicateurs d’Eigen et Schuster). Dans de tels
cas, une analyse plus poussée est nécessaire. Nous avons montré que le modèle de cycle
cellulaire embryonaire de Tyson a essentiellement trois modes avec des échelles de temps
différentes, à savoir l’accumulation de cycline, l’activation rapide de MPF et de manière
intermédiare la dégradation rapide de la cycline et la désactivation de MPF. Le mode le
plus rapide est décrit par des équations différentielles ordinaires monomiales, alors que les
modes moins rapides correspondent à des équilibrations tropicales et sont décrits par des
équations différentielles algébriques.

Plusieurs améliorations et développements sont nécessaires afin d’appliquer ces méthodes
à grande échelle. Le calcul des équilibrations tropicales subit une explosion combinatoire.
Cependant, pour le réseau biochimique utilisé comme exemple, le nombre de solutions
semble très petit comparé à la grande combinatoire des termes monomiaux. On peut



0.5. DEUX MODÈLES PARADIGMATIQUES DU CYCLE CELLULAIRE ET LEURS TROPICALISATIONS 15

esperer que, une fois formulés en programmation logique par contraintes, le problème
d’équilibrations peut être efficacement calculé en pratique comme un problème de satis-
faction de contraintes. Des méthodes efficaces sont également nécessaires pour calculer les
transitions entre les modes. La principale difficulté ici est liée au passage à travers les murs
(les segments de la variété tropicale). A proximité des murs, deux termes ou plus dominent.
Quand ces termes sont équilibrés, les orbites restent proches de ces murs et sont contenues
dans des variétés invariantes. La tropicalisation, complete ou à deux termes, fournit une
heuristique générale pour les transitions entre modes. Cette heuristique pourrait échouer
à proximité des murs. Par exemple, comme montré en [101] (Voir Chapitre 2), la tropicali-
sation complète prédit des modes glissants qui évoluent le long des murs et restent proches
des orbites du système complet. Cependant, ces modes glissants peuvent être trop longs,
quittant le mur quand les orbites du système complet sont déjà très éloignées. Dans le but
d’avoir une description précise du comportement à proximité des murs, il nous faut calculer
les variétés invariantes. Bien que cela soit généralement plus simple qu’intégrer l’ensemble
complet des équations, ce calcul peut devenir difficile pour les équilibrations tropicales
impliquant plus de deux termes. Des travaux futurs seront dédiés au développement de
méthodes générales pour ce problème.
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Introduction

Biology faces today an unprecedented situation. New experimental techniques in molec-
ular biology, biophysics, biochemistry, produce avalanches of data that need to be pro-
cessed, analysed, and understood. Modeling becomes part of biological reasoning, but in
order to be comprehensive, models increase their size practically without limits. For in-
stance, in order to represent the processes in a single signaling pathway a computational
biologist could use hundreds or thousands of biochemical reactions, leading to an equiva-
lent number of differential equations. A biological cell uses tens to hundreds of signaling
pathways that interact with one another. Such large systems are not only difficult to
analyse, but also practically impossible to identify from the available data. A strategy
to cope with such a tremendous complexity is to use abstractions, ie reduced versions of
the models that can reproduce with sufficient accuracy the behavior of the initial model.
These simplified models can be of various types. If the initial model is a system of ordi-
nary differential equations (ODEs), the abstraction can be a smaller system of ODEs, or a
hybrid model combining discrete and continuous variables or a purely discrete model (for
instance a Boolean network). All such descriptions are currently used in computational
biology. However, we lack general methods allowing to reduce or convert one type of model
into another, automatically. As model parameters are rarely known with precision, we need
methods to cope with uncertain parameters.

The work presented in this thesis was motivated by the above described situation in
computational biology.

We discuss a class of semi-formal methods allowing to reduce large networks of biochem-
ical reactions. In order to cope with parameter uncertainty we have based the reduction
methods on dominance relations among parameters and/or reaction rates. These meth-
ods exploit the multi-scaleness of biochemical networks, ie their property to have many,
well separated time and concentration scales. In multiscale networks parameters can be
replaced by orders of magnitude, that are much easier to obtain than the precise values.
Furthermore, the dynamics of dissipative reaction networks with many well separated time
scales can be described as a sequence of successive equilibrations of different subsets of
variables of the system. Polynomial systems with separation are equilibrated when at least
two monomial terms, of opposite signs, have the same order of magnitude and dominate
the others. These equilibrations and the corresponding truncated dynamics, obtained by
eliminating the dominated terms, find a natural formulation in tropical analysis and can
be used for model reduction.

By model reduction we transform systems of ODEs into systems of ODEs having
less variables and parameters. These simplifications can provide accurate approximations
globally, ie for large domains of values of parameters and for all positive times. Locally,
ie for restricted domains of values of parameters and intervals of times, reduced models
that are simpler than the global simplification can be found. This situation leads to a
piecewise-smooth hybrid description of the dynamics of the system, in which a smooth
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trajectory generated by the complex model is approximated by a sequence of smooth
pieces generated by simpler, but changing, ODEs. There are simple ways to hybridize a
network of biochemical reactions, consisting in replacing the sigmoidal functions occurring
in the definition of the reaction rates, by step functions, or by piecewise linear functions.
Another solution to perform hybridization is offered by tropical analysis under the form
of the Litvinov-Maslov correspondence principle. This idea can be applied to polynomial
or rational systems of ODEs (resulting in biochemistry from the mass action law) and
consists in approximating the polynomial functions by max-plus polynomials.

Both model reduction and hybridization are meaningful in the context of cell cycle
models in computational biology. Cell cycle regulates cell proliferation by the cyclic ac-
tivity of special proteins named cyclins. The modifications of these proteins can occur
abruptly, leading to changes of dynamical regime that are well described by mode changes
in piecewise smooth hybrid models. From a dynamical point of view, cell cycle models
have singular oscillations, alternating slow and fast intervals. By model reduction one can
emphasize the essential variables and parameters of the cell cycle models, and, in certain
cases, calculate the attractors analytically.

The structure of the manuscript is the following.
In Chapter 1 we propose numerical methods allowing to identify a hybrid model from

time series. We use this method to obtain hybrid approximations to existing smooth cell
cycle models.

In Chapter 2 we give a review of model reduction methods. The new results consist in
using tropical analysis and geometry in order to unify various approaches that apply to
networks with separation.

In Chapter 3 we discuss the tropicalization method and find some estimates justifying
its applicability.

In Chapter 4 we discuss the dynamics of singular cell cycle oscillators, justify rigorously
their reduction to lower dimensional systems and their hybridization.



Chapitre 1

Hybrid models for networks of
biochemical reactions

1.1 Introduction

Hybrid systems are widely used in automatic control theory to cope with situations
arising when a finite-state machine is coupled to mechanisms that can be modeled by
differential equations [92]. It is the case of robots, plant controllers, computer disk drives,
automated highway systems, flight control, etc. The general behavior of such systems is
to pass from one type of smooth dynamics (mode) described by one set of differential
equations to another smooth dynamics (mode) described by another set of differential
equations. The command of the modes can be performed by changing one or several dis-
crete variables. The mode change can be accompanied or not by jumps (discontinuities) of
the trajectories. Depending on how the discrete variables are changed, there may be several
types of hybrid systems : switched systems [124], multivalued differential automata [137],
piecewise smooth systems [40]. Notice that in the last case, the mode changes when the tra-
jectory attains some smooth manifolds. In these examples, the changes of discrete variables
and the evolution of continuous variables are deterministic. The class of hybrid systems
can be extended by considering stochastic dynamics of both continuous and discrete vari-
ables, leading to piece-wise deterministic processes, switched diffusions or diffusions with
jumps [114, 27, 26, 125, 16]. Hybrid, differential, or stochastic Petri nets provide equivalent
descriptions of the dynamics and were also used in this context [32].

The use of hybrid models in systems biology can be justified by the temporal and
spatial multi-scaleness of biological processes, and by the need to combine qualitative
and quantitative approaches to study dynamics of cell regulatory networks. Furthermore,
hybrid modelling offers a good compromise between realistic description of mechanisms of
regulation and possibility of testing the model in terms of state reachability and temporal
logics [85, 96]. Threshold dynamics of gene regulatory networks [10, 115] or of excitable
signaling systems [149] has been modelled by piecewise-linear and piecewise-affine models.
These models have relatively simple structure and can, in certain cases, be identified from
data [108, 35].Some methods were proposed for computing the set of reachable states of
piecewise affine models [12].

Among the applications of hybrid modeling, one of the most important is the cell cy-
cle regulation. The machinery of the cell cycle, leading to cell division and proliferation,
combines slow growth, spatio-temporal re-organisation of the cell, and rapid changes of
regulatory proteins concentrations induced by post-translational modifications. The ad-
vancement through the cell cycle is a well defined sequence of stages, separated by check-
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point transitions. This justifies hybrid modelling approaches, such as Tyson’s hybrid model
of the mammalian cell cycle [126]. This model is based on a Boolean automaton whose
discrete transitions trigger changes of kinetic parameters in a set of ODEs. The model has
been used to reproduce flow cytometry data.

Although sufficient for certain applications like gene networks, piecewise affine mod-
els are less adapted to describe phenomena where the dynamics between two successive
discrete events is strongly nonlinear. A typical example of such phenomena is the machin-
ery of the cell cycle. Proteolytic degradation of the cyclins is switched on rapidly by the
cyclin dependent kinase complexes but between two successive switchings the complexes
have non-linear dynamics implying several positive (autocatalytic processes) and negative
feed-back loops. These non-linear processes contribute to the robustness of the mechanism.

The idea of piecewise smooth systems arises naturally in the context of biochemical
systems with multiple separated timescales. The dynamics of a multiscale, dissipative,
large model, can be reduced to the one of a simpler model, called dominant subsystem
[112, 58, 57]. The dominant subsystem depends on the comparison among the time scales
of the large model. For nonlinear models, the dominant subsystem (which can be assim-
ilated to a mode) is only piecewise constant and can change several times during the
dynamics. The model reduction methods proposed in [57, 112] generate dominant sub-
systems whose reactions rates are multivariate monomials of the concentration variables,
like in the well-known S-systems [120]. Indeed, when applied to models using mass ac-
tion kinetics, quasi-steady state and quasi-equilibrium approximations [58] lead to lumped
models in which the reactions rates result from solving systems of polynomial equations.
In general, these polynomials contain only a few terms (fewnomials). The solutions of such
systems are much simplified in the case of total separation of the nonconstant terms in the
fewnomials and lead to monomial rates. The rate of the same reaction can be represented
by different monomials in different dominant subsystems (modes). For instance, the rate
of a Michaelis-Menten mechanism depends linearly on the concentration of the substrate
for small concentrations and is constant at saturation. We expect that more general rate
laws [84] can be treated similarly in our approach.

In this chapter we propose a heuristic to construct appropriate modes and adequate
piecewise smooth models by using a top-down approach. Then, we show how the param-
eters of the hybrid model can be identified from data or from trajectories produced by
existing smooth, but more complex models.

1.2 Hybrid models

We consider the so-called hybrid dynamical systems (HDS) consisting of two compo-
nents : a continuous part, u, satisfying the equations

dui
dt

= fi(u(t), s(t)), t > 0, (1.2.1)

where u(t) = (u1(t), u2(t), ..., un(t)) ∈ Rn, and a discrete part s(t) ∈ S, where S is a finite
set of states. We consider that there is an increasing series τ0 = 0 < τ1 < . . . < τk < . . .
such that the discrete variables are piecewise constant on the intervals [τi, τi+1[ and that
they change values at t = τk. The continuous variables can also have discrete jumps at
t = τk.

Typically, in molecular networks, the continuous variables are protein concentrations
and the discrete states may be gene or protein activities described by boolean variables
s(t) = (s1(t), s2(t), ..., sm(t)), where sj(t) ∈ {0, 1}.
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There are several possible ways to define the evolution of the s variables. Rather gen-
erally, this can be done by a time continuous Markov chain with transition probabilities
p(s, s′, u) from the state s to the state s′ (per unit time) depending on current state u(t).
However, in many molecular regulatory networks, transition probabilities dependence on
u is not smooth. For instance, the probability for s to jump is close to one if u goes above
some threshold value, and close to zero if u is smaller than the threshold. We can, in
certain cases, neglect the transition time with respect to the time needed for u variables to
change. In this situation, we can consider that discrete variables are simply deterministic
functions of the continuous variables. Further assuming that some of the discrete variables
contribute to production of u and that other contribute to the degradation of u we obtain
a general model of hybrid piece-wise smooth dynamical system

dui
dt

=
N∑
k=1

skPik(u) + P 0
i (u)−

M∑
l=1

s̃lQil(u)−Q0
i (u),

sj = H(
n∑
k=1

wjkuk − hj), s̃l = H(
M∑
k=1

w̃lkuk − h̃l), (1.2.2)

where H is the unit step function H(y) = 1, y ≥ 0, and H(y) = 0, y < 0, Pik, P 0
i , Qil, Q

0
i

are positive, smooth functions of u representing production, basal production, consump-
tion, and basal consumption, respectively. Here w, w̃ are matrices describing the inter-
actions between the u variables, i = 1, 2, ..., n, j = 1, 2, ..., N , l = 1, ...,M and h, h̃ are
thresholds.

One will usually look for solutions of the piecewise-smooth dynamics (1.2.2) such that
trajectories of u are continuous. However, we can easily extend the above definitions in
order to cope with jumps of the continuous variables. Similarly to impact systems occurring
in mechanics [33], the jumps of the continuous variables can be commanded by the following
rule : u instantly changes to p±j (u) whenever a discrete variable ŝj = H(

∑n
k=1 ŵjkuk− ĥj)

changes. The ± superscripts correspond to changes of ŝj from 0 to 1 and from 1 to 0,
respectively. We can consider reversible jumps in which case the functions p±j (u) satisfy
p+ ◦ p− = Id. The typical example in molecular biology is the cell cycle. In this case, the
command to divide at the end of mitosis is irreversible and corresponds to p+

j (u) = u/2.
No return is possible, p−j (u) = u.

The class of models (1.2.2) is too general. We will restrict ourselves to a subclass of
piecewise smooth systems where smooth production and degradation terms are assumed
multivariate monomials in u, plus some basal terms that we try to make as simple as
possible. A system with constant basal production and linear consumption is the following :

Pik(u) = aiku
αik

1
1 . . . uα

ik
n
n ,

P 0
i (u) = a0

i ,

Qil(u) = ãilu
α̃il

1
1 . . . uα̃

il
n
n ,

Q0
i (u) = ã0

iui, (1.2.3)

which will be chosen according to an heuristic presented in the next sections.
This restriction does not reduce the power of the method. As argued in the introduction,

the monomial rates represent good approximations for nonlinear networks of biochemical
reactions with multiple separated timescales [112, 57]. More generally, rational functions
are good candidates for general rate laws [84]. However, when concentrations are very large
or very small the monomial laws are recovered. For instance, Michaelis Menten, Hill, or
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Goldbeter-Koshland reactions switch from a saturated regime where rates are constant to a
small concentration regime where rates follow power laws. Finally, by methods described in
[141, 142] one can show that the above subclass of models can approximate with arbitrary
precision any structurally stable dynamics.

These models have several advantages with respect to standard models in molecular
biology and neuroscience based on differential equations. They allow us to simulate, in a
fairly simple manner, discontinuous transitions occurring in such systems (see a typical
graph describing time evolution of protein concentration within cellular cell cycle, Fig.4.1).
The discontinuous transitions result either from fast processes or from strongly non-linear
(thresholding) phenomena. This class of models is also scalable in the sense that more and
more details can be introduced at relatively low cost, by increasing the number of discrete
variables and the size of the interaction matrices.

The definition of the rates slightly extends the one used in S-systems, introduced by
Savageau [120]. Our choice was motivated by the fact that S-systems proved their utility
as models for metabolic networks whose dynamics we want to encompass by considering
the modes. The introduction of basal terms avoids spurious long living states when some
products have zero concentrations.

1.3 Regulated reaction graphs and hybrid reaction schemes

Interaction mechanisms in molecular biology can be schematized as regulated reaction
graphs.

A regulated reaction graph is a quadruple (V,R,E,Er). The triplet (V,R,E), where
E ⊂ V ×R ∪R × V , defines a reaction bipartite graph, ie (x, y) ∈ E iff x ∈ V, y ∈ R and
x is a substrate of R, or x ∈ R, y ∈ V and y is a product of x. Er ⊂ V ×R is the set that
defines regulations, (x, z) ∈ Er if the rate of the reaction z ∈ R depends on x ∈ V and x
is not a substrate of R.

Similar structures of regulated reactions where proposed elsewhere for non-hybrid mod-
els [84].

In order to define a hybrid model we first need a hybrid reaction scheme. This consists
in saying, for each given species, whether its production/degradation can be switched on
and off and by which species, also which species modulate the production/degradation
of a given species in a smooth way. This means specifying a partition of the regulations
Er = Edr ∪ Ecr . A regulation (x, r) ∈ Edr is discrete if the decision to switch on and off
the reaction r depends (among others) on x. Discrete interactions manifest themselves
punctually as a consequence of thresholding and/or of rapid phenomena. The continuous
regulations guide the dynamics of the modes. Similarly, there is a partition of the reactions
R = Rs∪Rc. A reaction r belongs to the switched reactions r ∈ Rs if (x, r) ∈ Edr , for some
x ∈ V . The role of the regulators (continuous if they modulate the reaction rate, discrete
if they contribute to switching it on and off) should be indicated on the graph together
with the signs of the regulations.

1.4 Identification of piecewise smooth models

We would like to develop methods allowing to find the parameters of a model from
the class introduced above that best describes the observed trajectories of a biological
system. These trajectories can come from experiments or can be produced by non-hybrid
models. In both situations we obtain a model whose parameters can be easily interpreted



1.4. IDENTIFICATION OF PIECEWISE SMOOTH MODELS 23

in biological terms. The hybrid model can be further analyzed or used to model more
complex situations.

In the following we present a reverse engineering algorithm that works well for systems
with sharp transitions.

Data. n trajectories (time series) u1(t), ..., un(t) given at time moments t0, t1, ..., tN . A
regulated reaction graph (the smooth/discrete partition of the regulations can be unspec-
ified).

Output. A model of the type (1.2.2), (1.2.3) with values of the parameters that fit well
the data.

The algorithm has several steps, some of them involving several alternative numerical
solutions. For some of the steps the choice of the numerical solution was adapted to the ap-
plication presented in the paper, which is the reconstruction of a hybrid cell cycle oscillator.

I. Choice of hybrid reaction scheme and of monomials giving the smooth part of the
rates.

The reaction rates have the forms given by (1.2.3). The monomial exponents αij ,
α̃ij , the rate functions defining the modes, the mode switching and the jumps can be
obtained from the following heuristic rules :

i) If a reaction j is activated then αij = 1 for all activators i and αij = −1 for all
inhibitors i in the absence of cooperativity. By cooperativity we design generi-
cally, situations when the reaction rates depend on powers of the concentrations
of regulators instead of just being proportional to them (this includes the case of
regulator complexes, synergetic binding of molecules on a substrate, as well as
allostery) These phenomena can be taken into account by considering |αij | > 1.

ii) Basal rates are constant for reactions without substrates and proportional to the
concentration of the substrate otherwise.

iii) If activated reactions are present with intermittence, their non-basal rates are
multiplied by discrete variables si ; this defines the mode switching.

iv) If a continuous variable ui is known to induce a jump decision (for instance cell
division), it should appear in the definition of the jump discrete variables ŝ.
The functions p(u) follow from biological observations.

Once the hybrid reaction scheme chosen, we want to fit the remaining model param-
eters in order to reproduce the observed dynamics.

II. Detection of the events locations.

We look for K time intervals I1, I2, ..., IK . The dynamics on each of the intervals is
smooth, it is given by (1.2.2) with the s variables fixed. Mode transitions (change of
the variables) occur at the borders of these intervals. We denote the switching times
as τ1, ...τK .
Finding τk is a problem of singularity detection. This could be done by various meth-
ods, for example by wavelet analysis [139]. Here we decided to use the derivatives of
the reaction rates to locate the mode switching events. The peaks of these derivatives
indicate the positions of switching events, whereas the sign of the derivatives indi-
cate the sign of the change (activation if positive, inactivation if negative). With this
simple criterion we are able to reconstruct the sequence of modes which is defined
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by the values of the boolean variables s(t).

III. Determining the mode internal parameters.

The previous steps define a set of modes and the static event location. Given a choice
of the modes internal parameters the hybrid trajectories can be integrated without
knowing the discrete regulations (this will allow the dynamic event location at the
next step) : the values of s between two successive events are enough. Modes internal
parameters are obtained by optimization. Let umodesi (t) be the continuous hybrid
trajectories obtained by integrating the modes between the calculated transition
times. We use a parallel version of Lam’s simulated annealing algorithm [22] to
minimize the following objective function :

F =
∑
i,k

Ck(umodesi (tk)− ui(tk))2,

where Ck are positive weights. The choice of the weights depends on the dynami-
cal features one wants to reproduce. For instance, for the cell cycle application we
choose weights that increase with time. We thus penalize large time deviations that
can arise from the loss of synchronicity among variables ui and avoid the period
misfit that could arise between the hybrid and the smooth dynamics after dynamic
event location.

IV. Determining the mode control parameters and dynamic event location.

Let sm = H(
∑

(m,j)∈Er wmjuj − hj) be the discrete variables determined above.
Let smk be the constant values of sm on Ik. Consider now the optimal trajectories
umodes∗i (tl) obtained before.
Then, one should have

(
∑

(m,j)∈Er

wmju
modes∗
j (tl)− hj)smk > 0, for all tl ∈ Ik, (1.4.1)

which is a linear programming problem for wmj that can be resolved (if it has a
solution) in polynomial time. This complexity result is well known since Khachiyan’s
proof of polynomial runtime for the ellipsoid method.

Remark. This algorithm hybridizes switched biochemical reactions whose rates should be
modelled by complicated functions (for instance Goldbeter-Koshland) in smooth models.
In our hybrid modeling these rates are multivariate monomials piecewisely.

1.5 Parallel simulated annealing.

Solving combinatorial optimization problems is a NP-hard problem, a known bottle-
neck for parameter identification. One of the main method used to solve this issue is a
generalisation of the Metropolis algorithm [138], known as Simulated Annealing (SA),
which comes from the analogy with annealing in metallurgy.

In order to reach an optimal crystalline structure, metallurgists use heating and con-
trolled cooling of the material. Heating allow the atoms to escape local energy minima
configurations and reach thermal equilibrium. Then, a slow cooling gives them a higher
probability of reaching an optimal lower energy configuration, if cooling is quasi-static, i.e.
if it preserves thermal equilibrium.



1.5. PARALLEL SIMULATED ANNEALING. 25

This algorithm has been introduced by Kirkpatrick et al. [76]. The analogy with metal-
lurgy is that the systems is allowed to accept cost increase during the optimization, and by
this process the probability to get stuck in a local optimum is decreased. To achieve this, a
variable called temperature (by analogy to the material temperature) is slowly decreased
during the optimisation. A higher temperature increases the probability to accept higher
costs, whereas at low temperatures this happens only rarely. The temperature should be
kept constant sufficienly long for the system to reach equilibrium. Then, it will finally
reach a point where no increase in cost is accepted and the result is a global optimum.

One of the difficulty with this algorithm is to schedule the decrease in temperature.
The faster it is decreased, the bigger the chance to get stuck in a local optimum. Only a
infinitely slow decrease guarantees convergence to the the global optimum with probability
one. Thus, there need to be a cut-off value for the rate of temperature decrease. Different
methods have been proposed to schedule the decrease of the value of this variable [97, 1].

Another difficulty is the move generation strategy, which ideally must be adaptable.
Lam and Delosme developed in 1988 [78, 79] a schedule which adaptively controls

the temperature decrease, with the constraint of maintaining quasi-equilibrium. A key
difference from other adaptive schedules is that it takes into account the move generation
strategies, and provides an adaptive recipe for their control.

The Lam schedule is an adaptive exponential schedule given by :

sk+1 = sk + λ( 1
σ(sk)

)( 1
s2
kσ

2(sk)
)(4ρ0(sk)(1− ρ0(sk))2

(2− ρ0(sk))2 ), (1.5.1)

where sk = 1/Tk, and Tk is the temperature at the kth evaluation of the cost function
E. ρ(sk) is the standard deviation of E at this step, and ρ0(sk) is the ratio of accepted
to attempted moves, called acceptance ratio. The four factors of this equation play the
following roles :

1. λ is a quality factor. With a smaller λ, the quality of the answer increases, but so is
the computation time.

2. 1
ρ(sk) is the distance of the system from quasi-equilibrium

3. 1
s2

k
ρ2(sk) is the inverse of the statistical specific heat which depends on the variance,

see [76].

4. 4ρ0(sk)(1−ρ0(sk))2

(2−ρ0(sk))2 is equal to ρ2/2, where ρ2 is the variance of the average energy
change during a move. It is a measure of how effectively the state space is sampled
and was found to be at a maximum value when ρ0 ' 0.44.

In our particular problem of fitting parameters of ODEs, one of the issues is that the
state variables for the optimization have widely different characteristic scales.

In the Metropolis Algorithm [138], a new state always depends on one or more previous
states and one or more random variables. The serial nature of this algorithm makes it
difficult to parallelize, especially in our particular case. Asynchronous parallelization can
lead to acceptable speed-up, but only for cost functions that are separated or loosely
coupled. Without such properties, the algorithm can show catastrophic divergences [90].
In the case of fitting parameters of ODEs from time series data, the cost function is
completely inseparable, and asynchronous simulated annealing fails to converge.

The essential idea to achieve it is to make all processors work on an independent
Markov chain. From time to time, these processors must communicate to pool statistics,
and select the best states of energy. The most successful method has been proposed by
Chu et al. [21], and can lean to nearly 100% parallel efficiency.
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The implementation we choose for the optimization is the method proposed by Chu et
al. [21], and a basic implementation has been provided by John Reinitz from the University
of Chicago. It is coded in C, and uses MPI for the parallel implementation. For our
particular problem, we have to deal with stiff transitions within the hybrid model, and we
needed to use an appropriate solver. Our choice has been to use the CVODE solver [24].
It is part of the SUNDIALS collection of solvers [68] developed by the Center for Applied
Scientific Computing at Lawrence Livermore National Laboratory.

Figure 1.1 – Bimodal behaviour in the final solution Ef . Solutions superior to three
belong to the quenched attractor.

We tried to reproduce the results from Chu et al. with a simple model, involving only
2 variable and 4 parameters. We first needed to find an appropriate λ for our problem. For
large value of λ, the optimization exhibit a bimodal behaviour in the final solution Ef (see
Fig. 1.1). The first attractor is a local optimum, referred to as the quenched attractor. The
second attractor is the global optimum. The comprise chosen is to allow approximately
50% if the solution in the quenched attractor. Implementation shows a maximum speedup
of 70% with 8 processors, and a reach a plateau at 50% for 32 processors (see Fig. 1.2).

Figure 1.2 – Speedup of the parallel implementation according the the number of pro-
cessors
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Figure 1.3 – (Top Left) Trajectories of the non-hybrid model by Tyson [140]. (Top Right)
Trajectories of the hybrid model. (Bottom Left) Reaction graph of the non-hybrid model.
(Bottom Right) Reaction graph of the hybrid model.

1.6 Examples

A simple cell cycle model As a simple example let us consider the minimal model
proposed by Tyson for Cdc2 and Cyclin interactions [140]. This model, which contains
initially 6 species and 9 reactions, can be reduced to only 2 species and 4 reactions (details
of the reduction will be given elsewhere), while keeping the same dynamics. The two species
left are Cyclin-Cdk complexes, with two phosphorylation states : phosphorylation of both
monomers (Cpp := Cyclinp.Cdc2p), or only Cyclin phosphorylated (Cp := Cyclinp.Cdc2).

d[Cpp]
dt

= k1 − k′4[Cpp]− k4[Cpp][Cp]2,

d[Cp]
dt

= −k6[Cp] + k′4[Cpp] + k4[Cpp][Cp]2

(1.6.1)

The regulated reaction graph and the hybrid scheme are represented in Fig.4.1. The
dynamics of this model is quite simple. The linear dephosphorylation is slower than the
production of Cpp. This create an accumulation of Cpp. Then at some threshold the Cp
produced activates the second, faster, dephosphorylation, which drains the accumulated
Cpp. Here we model this second, faster reaction as an hybrid reaction, totally controlled
by thresholds. This is justified by the observed peaks of the rate derivative (Fig.1.4) and
leads to the following hybrid model :

d[Cpp]
dt

= k̃1 − k̃′4[Cpp]− k̃4s[Cpp],

d[Cp]
dt

= −k̃6[Cp] + k̃′4[Cpp] + k̃4s[Cpp],

(1.6.2)

where s = H(w1[Cpp] + w2[Cp]− h) is the boolean variable.
After the parameter fit we find that w1 and w2 are both positive.
For this model no jumps of the continuous variables are needed. Indeed, at the end of

mitosis, all continuous variables have small values. Bringing their values to half would not
change much the behavior of the model.
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Figure 1.4 – Rate derivative for the simple cell cycle model.

Generic mammalian cell cycle model This model has been proposed by the group
of Tyson [28] and is designed to be a generic model of the cell cycle for eukaryotes. The
cell cycle being an old, but important system that evolved, there have to be homologies,
i.e. common mechanisms shared by the cell cycle regulation of all eukaryotes. The goal of
this model is to bring to light these mechanisms, while producing models that reproduce
experimental results. Four different eukaryotic organisms were modelled : budding yeast,
fission yeast, Xenopus embryos, and mammalian cells. For each of theses organisms, a set
of parameters is provided. By changing parameter sets, one can activate or deactivate some
modules, fine tune some mechanisms, in order to reproduce the behaviour of the cell cycle
in the chosen organism.

We analyse here only the model describing mammalian cells. This model uses twelve
variables (eleven of them being concentrations of proteins, and one being the mass of the
cell) and forty reactions. We briefly discuss the steps of the algorithm applied to this
model.

Choice of the hybrid scheme. Five of these reactions are typically switch-like, following
Goldbeter-Koshland kinetics, defined as follows :

GK(v1, v2, J1, J2) = 2v1J2

B +
√
B2 − 4(v2 − v1)v1J2

, (1.6.3)

with B = v2 − v1 + J1v2 + J2v1.
These kinetics describe a steady-state solution for a 2-state biological system, meaning

that this reaction will have two basics modes : active or inactive. These reactions are
replaced by switched reactions whose rates are simplified monomial rates multiplied by a
boolean variable.

For instance the reaction that produces Cyclin-B, induced by the cell mass, has the
following kinetic rate :

R = ksbpp [Mass] GK(kafb [CycB], kifb, Jafb, Jifb) (1.6.4)

In this case we replace the Goldbeter-Koshland (GK) function by a step function and
obtain the following simpler rate :

R′ = k′ [Mass] s, (1.6.5)

where s is a boolean variable.
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We apply the same method for all the five GK reactions of the model. The original
and hybridized reaction rates can be find in the Table 2.1 at the end of this chapter.

Another set of reactions reactions we want to modify in this model are Michaelis-
Menten (MM) reactions. We want to reproduce the two functioning modes of Michaelis-
Menten kinetics, namely the linear and the saturated behaviour. The linear behaviour is
observed when the substrate is in low supply. In this case, the flux of the MM reaction will
be linear with respect to the substrate supply. The saturated behaviour is observed when
the substrate supply is in excess, and produce a constant flux. Our goal is to obtain an
hybrid reaction which switches between these two modes, controlled by boolean variables.

There are ten such reactions within this model. A classic MM reaction rate would be
the following :

MM(X) = k.X

X + km
, (1.6.6)

and we propose to replace it by the following reaction :

MM(X) = s.k′ + s̃.k′′.X, (1.6.7)
where s is a boolean variable, and s̃ is the complementary of s.

We apply this transformation to all the Michaelis-Menten reactions. The original and
hybridized reaction rates can be find in the Table 2.1 at the end of this chapter.

Detection of the transitions. Static event locations follow from the positions of sharp
local maxima and minima of the derivatives of the reactions rates with respect to time
(these correspond to sharp local maxima and minima of the second derivatives of the
species concentrations, with respect to time). We have checked numerically that in the
case of GK functions, these positions are close to the solutions of the equation v1 = v2.
This property follows from the sigmoidal shape of the GK regulation functions. It is indeed
well known that GK sigmoidal functions have an inflexion point defined by the condition
v1 = v2, when the activation and inhibition input rates are equal. If the case of MM
functions, these positions are close to the solutions of the equation X = km.

These findings are illustrated in Figs. 1.5,1.6. We can deduce the value of the boolean
variables by checking the inequation v1 > v2 in the GK case, and X > km in the MM
case. We can observe that the change of the result of these inequations corresponds to the
maximum and minimums of the derivative (Fig. 1.5 and Fig. 1.6).

The structure of the model can be used to reduce the number of boolean control
variables. In the case of reactions R11,12 or R13,14,15, we can see looking at reaction rates
in the Table 2.1 that the inequations controlling their behavior should be the same. Thus,
we can use the same boolean variable to control these reactions. Furthermore, we found
out while looking for these transitions that for some MM reactions these transitions do not
occur along the limit cycle trajectories. In the case of reactions R7 and R9, the behaviour is
always saturated. We chose not to represent these reactions as hybrid (switched) reactions,
and represented only their saturated behaviour.

We can use these inequalities and hybrid model description to fit parameters in one of
three ways :
i) Statically, meaning that the discrete variables times series s(t) will be calculated at

the previous step of the algorithm and will not change during the fit. In this case
one fits only the parameters describing the modes. This has the benefit of simplicity,
but comes with problems. The simplification in the representation of the reactions
will introduce a difference between the original and the hybrid model, and such a
difference should impact on the position of transitions.
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Figure 1.5 – Flux and derivative of the flux for the Goldbeter-Koshland reaction R4. The
shaded areas correspond to value where the inequation v1 > v2 is true.

Figure 1.6 – Flux and derivative of the flux for the Michaelis-Menten reaction R10. The
shaded areas correspond to value where the inequation X > km is true.
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ii) Statically, but allow for modifications of the discrete variables time series s(t). We
could try to include the positions of these transitions in the fitting parameters, but
it would increase the complexity of the cost function. It would notably be a problem
to modify all transitions occurring in a single reaction accordingly, which is important
for the computation of mode control parameters.

iii) Dynamically. We could use these inequations dynamically, by evaluating them during
the optimization. The transitions positions will be determined according to original
model conditions applied on hybrid model trajectories. This solves the problem of
adapting transitions positions of a single reaction according to each other. The prob-
lem is that the conditions from the original model must be adapted to the hybrid
model, therefore all inequality parameters should be added to the fitted parameters.
The problem with this addition is that these parameters are more sensitive, thus
increasing the optimization difficulty.

Fitting the hybrid model parameters. Once defining the model structure and the pa-
rameters to be fitted we can apply the simulated annealing algorithm described previously.
We limit the parameters search space to those involved in the hybridized reactions (a more
extensive search is nevertheless possible). For the cost function, we have decided to test
both species trajectories and reaction fluxes. When we limit ourselves to species trajecto-
ries, since some reactions have transitions that are close in time, there is a risk that some
hybridized reaction will compensate for others. We wanted each hybridized reaction to be
as much as possible a replica of the original reaction.

When using the definition with static discrete variables s(t) and fitting only the mode
parameters (cases i) above), we were not able to obtain even an imperfect fit of the model
(in this case the trajectories of the hybrid model are very different from the ones of the
original model and even become instable). We chose to include transition positions to the
parameters of the fitting (case ii)), and were able to obtain a reasonable fit. However, the
imperfections in the localisation of these new transition positions made difficult to find
good control parameters (see next step) for all the hybridized reactions. The trajectories
of the hybrid model fitted using this method are shown in Fig. 1.7. One can notice impor-
tant differences between the trajectories of the hybrid and original model, although these
differences remain bounded and the stability of the limit cycle oscillations is preserved.

When using the definition with the original model conditions for transitions (case iii)),
we were able to obtain a working hybrid model, but the fit can still be improved by
modifying slightly the mode control parameters. We can observe on Fig. 1.8 that while the
dynamics of the model is preserved, there are differences in the transition positions.

Thus, when we included the parameters of transitions conditions, we obtained a model
which fits better the original one. As a control we can see the results of the fitting on
both the trajectories of the four main variables (Fig.1.9) and the fluxes of some hybridized
reactions (Fig.1.10).
An interesting result of this optimization is that some hybridized reactions stopped having
transitions, suggesting that the best fit would be obtained without these transitions. The
reaction R6 (Fig. 1.11) is one of these reactions. This could be the result of the sensitivity
of transition control parameters and a selection of a more robust solution.

Computing the mode control parameters. If we chose the static method of representing
transitions during the fit, we now have to determine a regulation matrix, which will allow
a dynamic definition of the events location. This is a problem of linear programming, and
is solved using simplex algorithm [31] variation implemented in Matlab.

At this step, it is interesting to note that we have some choice about which variable
can control reactions. This potentially leads to multiple solutions of the inequations. The
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Figure 1.7 – Comparison of the trajectories of the four main variables. (blue : Cyclin-A,
green : Cyclin-B, red : Cyclin-C, aqua : cell size) (Plain lines) Original model (Dashed
lines) Hybrid model without mode control parameters fitting (case ii)).

Figure 1.8 – Comparison of the trajectories of the four main variables. (blue : Cyclin-A,
green : Cyclin-B, red : Cyclin-C, aqua : cell size) (Plain lines) Original model (Dashed
lines) Hybrid model without mode control parameters fitting (case iii)).

best choice would be here to use the biological knowledge to choose the species actually
involved in the reaction.

The problem with this step is that its success depends on the quality of transition
positions used during the fitting of the hybrid model parameters. In order to solve these
inequations, all transitions positions must respect the periodicity. The fact that some
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Figure 1.9 – Comparison of the trajectories of the four main variables. (blue : Cyclin-A,
green : Cyclin-B, red : Cyclin-C, aqua : cell size) (Plain lines) Original model (Dashed
lines) Hybrid model with mode control parameters fitting (case iii))W.

Figure 1.10 – Comparison of original and hybridized reaction fluxes. Top : GK Reaction
R4. Bottom : MM Reaction R10. Blue : flux of original reaction, Green : flux of hybridised
reaction

transitions could occur too soon, and too early in the same timeseries means that solving
all these inequations is impossible.

To cope with this issue, we introduced a variable ε so that the inequality 1.4.1 is
modified to :
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Figure 1.11 – Comparison of reaction R6 results without and with the fitting of transi-
tion control parameters. Top : Fit without control parameters. Bottom : Fit with control
parameters. Blue : flux of original reaction, Green : flux of hybridized reaction

∑
(m,j)∈Er

wmju
modes∗
j (tl)− hj)smk + εm > 0, for all tl ∈ Ik, (1.6.8)

This modification enables us to solve all the inequations, and gives us a good metric
to asses the quality of the resolution. Furthermore, the parameter ε particularly can be
used within the simplex algorithm to be minimized. The ideal case is when ε is negative or
zero, which means that we do not have the periodicity issue. When simulating the hybrid
model, we found out that without a null or negative epsilon, the model is most of the time
unstable.

Periodicity is not the only difficulty for this step. In our formalism, the threshold to
modify the boolean variables controlling a given reaction is the same for an activation
or an inactivation. This could also be a problem, as we can not always enforce such a
condition during the fitting. There are different solutions to this problem. The first one
would be to have different thresholds for reaction activation and inactivation, but this
choice misses the simplicity of the method of control which is achievable by other means.
More precisely, even activation and inactivation thresholds correspond geometrically to
control of the modes by manifold crossing (activation when crossing takes place in one
direction, inactivation for crossing in the opposite direction), whereas different thresholds
do not allow for such a simple picture.
The other solution would be not to limit ourselves to the biologically relevant variables to
control these transitions. As we increase the number of variables, the probability to find
a combination which satisfies the inequations increases. The problem with this choice is
the large number of possible combinations. We used a genetic algorithm which selects the
variables which had the lowest ε value and were able to find combinations which satisty
the inequations for some reactions. But for others reaction, especially Michaelis-Menten
reactions, even with all variables, we were not able to obtain low enough ε. We were able to
use this method to build an hybrid model which only hybridized the Goldbeter-Koshland
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reactions. The result can be seen in Fig. 1.12.

Figure 1.12 – Comparison of the trajectories of the four main variables. (blue : Cyclin-A,
green : Cyclin-B, red : Cyclin-C, aqua : cell size) (Plain lines) Original model (Dashed
lines) Hybrid model with mode control parameters fitting.

1.7 Conclusion

The results that we present are a proof of principle that piecewise smooth hybrid mod-
els can be constructed with a simple heuristic from basic information about biochemical
interactions. Using this class of hybrid models instead of piecewise-linear approximations
provides, in many situations, a better balance between discrete and smooth interactions.
The identification algorithm proposed in the paper combines the static location of the
events, the identification of the modes by simulated annealing, and the identification of
the mode control parameters by dynamic location. The hardest step of this algorithm is
the simulated annealing. Furthermore, for large models, we expect several solutions for the
mode control parameters. We are currently improving the algorithm to cope with these sit-
uations. A better choice of the modes dictated by model reduction techniques could reduce
the time for simulated annealing. Also, we are investigating the use of event location func-
tions that are linear in the logarithms of the continuous variables. According to the ideas
of the introduction, these nonlinear location functions will indicate changes of the domi-
nant monomials in the rate functions, more accurately than the linear location functions.
Moreover, they can be obtained directly from the initial smooth model without the need
to solve (eventually undetermined) dynamic location inequations. Improved segmentation
techniques are needed for future application of the algorithm directly to data.

In the future we will apply the heuristic and the fitting algorithm to model complex
situations when signaling pathways interact with the eucaryotic cell cycle. The resulting
hybrid models will also be used to investigate emerging properties of regulatory networks
such as viability and robustness.
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Tables

Table 2.1 - Definition of reactions in the original and hybridized mam-
malian cell cycle model. The inequalities controlling the mode switching
result directly from the definition of the reaction rates in the original
model.

reaction smooth variables reaction hybrid control

R1 = ksapp.[Mass]. v1 = katfp + katfapp.[CycA]+ R1h = ksapp.[Mass].s1 s1 = v1 > v2
.GK(v1, v2, Jatf, Jitf) +katfdpp.CycD0.[Mass]

v2 = kitfp + kitfapp.
.[CycA] + kitfbpp.[CycB]

R2 = k25pp.[pB] v1 = ka25p + ka25pp.[CycE] R2h = k25pp.[pB].s2 s2 = v1 > v2
.GK(v1, v2, Ja25, Ji25) v2 = ki25p + ki25pp.[Cdc20A]
R3 = kweepp.[CycB] v1 = kaweep + kaweepp.[Cdc20A] R3h = kweepp.[CycB].s3 s3 = v1 > v2
.GK(v1, v2, Jawee, Jiwee) v2 = kiweep + kiweepp.[CycB]
R4 = ksbpp.[Mass] v1 = kafb.[CycB] R4h = ksbpp.[Mass].s4 s4 = v1 > v2
.GK(v1, v2, Jafb, Jifb) v2 = kifb
R5 = ksepp.[Mass] v1 = katfp + katfapp.[CycA]+ R5h = ksepp.[Mass].s1 s1 = v1 > v2
.GK(v1, v2, Jatf, Jitf) +katfdpp.CycD0.[Mass]

v2 = kitfp + kitfapp.
.[CycA] + kitfbpp.[CycB]

R6 = ks20pp X = [CycB] R6h = ks20pp.s5 s5 = X > Km

.X/(Km +X) Km = J20 +ks20pp2.s̃5.X
R7 = kaie.[CycB] X = (APCT − [APCP ]) R7h = ks20pp.[CycB]
.X/(Km +X) Km = Jaie
R8 = kiie X = [APCP ] R8h = kiie.s6 s6 = X > Km

.X/(Km +X) Km = Jiie +kiie2 ∗ s̃6.X
R9 = ka20.[APCP ] X = [Cdc20i] R9h = ka20.[APCP ]
.X/(Km +X) Km = Ja20
R10 = ki20 X = [Cdc20A] R10h = ki20.s7 s7 = X > Km

.X/(Km +X) Km = Ji20 +ki202.s̃7.X
R11 = kah1p X = (Cdh1T − [Cdh1]) R11h = kah1p.s8 s8 = X > Km

.X/(Km +X) Km = Jah1 +kah1p2.s̃8.X
R12 = kah1pp.[Cdc20A] X = (Cdh1T − [Cdh1]) R12h = kah1pp.[Cdc20A].s8 s8 = X > Km

.X/(Km +X) Km = Jah1 +kah1pp2.[Cdc20A].s̃8.X
R13 = kih1app.[CycA] X = [Cdh1] R13h = kih1app.[CycA].s9 s9 = X > Km

.X/(Km +X) Km = Jih1 +kih1app2.[CycA].s̃9.X
R14 = kih1bpp.[CycB] X = [Cdh1] R14h = kih1bpp.[CycB].s9 s9 = X > Km

.X/(Km +X) Km = Jih1 +kih1bpp.[CycB].s̃9.X
R15 = kih1epp.[CycE] X = [Cdh1] R15h = kih1epp.[CycE].s9 s9 = X > Km

.X/(Km +X) Km = Jih1 +kih1epp.[CycE].s̃9.X

Table 2.2 - Parameters of the hybridized mammalian cell cycle model
described in the table 2.1.

constant value

ksapp 0.024635
katfp 0
katfapp 0.00090318
katfdpp 2.6897
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katfepp 2.1407
kitfp 0.22282
kitfapp 0
kitfbpp 0.14253
k25pp 3.559
ka25p 0
ka25pp 21.93
ki25p 5.425
ki25pp 0
kweepp 0.096009
kaweep 3.5714
kaweepp 0
kiweep 0
kiweepp 9.003
ksbpp 0.033299
kafb 0.15998
kifb 0.0056319
ksepp 0.14842
ks20pp 0
ks20pp2 0.048074
J20 3
kaie 0.076693
kiie 0.1685
kiie2 17.568
Jiie 0.0096156
ka20 0.4815
ki20 0.24271
ki202 5.3118
Ji20 0.045084
kah1p 0
kah1p2 0.15387
kah1pp 0
kah1pp2 3.9768
Jah1 1
kih1app 0.099851
kih1app2 2.5689
kih1bpp 0
kih1bpp2 14.966
kih1epp 0.10502
kih1epp2 1.7755
Jih1 0.12035

Table 2.3 - Definition of reactions in the original and hybridized mam-
malian cell cycle model. The inequalities controlling the mode switching
result from the computation of mode control parameters post-fitting.

reaction smooth variables reaction hybrid

R1 = ksapp.[Mass]. v1 = katfp + katfapp.[CycA]+ R1h = ksapp.[Mass].s1
.GK(v1, v2, Jatf, Jitf) +katfdpp.CycD0.[Mass]

v2 = kitfp + kitfapp.
.[CycA] + kitfbpp.[CycB]
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R2 = k25pp.[pB] v1 = ka25p + ka25pp.[CycE] R2h = k25pp.[pB].s2
.GK(v1, v2, Ja25, Ji25) v2 = ki25p + ki25pp.[Cdc20A]
R3 = kweepp.[CycB] v1 = kaweep + kaweepp.[Cdc20A] R3h = kweepp.[CycB].s3
.GK(v1, v2, Jawee, Jiwee) v2 = kiweep + kiweepp.[CycB]
R4 = ksbpp.[Mass] v1 = kafb.[CycB] R4h = ksbpp.[Mass].s4
.GK(v1, v2, Jafb, Jifb) v2 = kifb
R5 = ksepp.[Mass] v1 = katfp + katfapp.[CycA]+ R5h = ksepp.[Mass].s1
.GK(v1, v2, Jatf, Jitf) +katfdpp.CycD0.[Mass]

v2 = kitfp + kitfapp.
.[CycA] + kitfbpp.[CycB]

control value

s1 w1,1.[CycA] + w1,2.[CycB] + w1,4.[APCP ] + w1,6.[Cdc20i] + w1,7.[Cdh1] +
w1,8.[CKI] + w1,9.[Mass]− 1 > 0

s2 w2,3.[CycE] + w2,9.[Mass] + w2,12.[TriE]− 1 > 0
s3 w3,3.[CycE] + w3,9.[Mass] + w3,12.[TriE]− 1 > 0
s4 w2,2.[CycB] + w2,9.[Mass] + w2,10.[pB]− 1 > 0

Table 2.4 - Parameters of the hybridized mammalian cell cycle model
described in the table 2.3.

constant value

ksapp 0.024064
ksepp 0.18569
kweepp 0.17326
k25pp 3.5168
ksbpp 0.030148
w1,1 1.e+9
w1,2 0.4352e+9
w1,4 -1.5677e+9
w1,6 -4.0592e+9
w1,7 1.e+9
w1,8 -0.7937e+9
w1,9 0.1138e+9
w2,3 -2.218e+9
w2,9 1.e+9
w2,12 -10.027e+9
w3,3 0.2278e+9
w3,9 -0.1015e+9
w3,12 1.e+9
w4,2 0.2294e+9
w4,9 -0.0294e+9
w4,10 1e+9



Chapitre 2

Model reduction for
computational biology models

2.1 Introduction

During the last decades, biologists have identified a wealth of molecular components
and regulatory mechanisms underlying the control of cell functions. Cells integrate exter-
nal signals through sophisticated signal transduction pathways, ultimately affecting the
regulation of gene expression, including that of the signaling components. Metabolic func-
tions are sustained and controlled by complex machineries involving genes, enzymes and
metabolites. The genetic regulations result from the coordinate effect of many, mutually
interacting genes. These regulations involve many molecular actors, including proteins and
regulatory RNAs, which form large, intricate networks.

Current dynamical models of cellular molecular processes are small size networks. These
small scale models, that are subjective simplifications of reality, can not take into account
the specificities of regulatory mechanisms. New methods are needed, allowing to reconcile
small scale dynamical models and large scale, but static, network architectures. The main
obstacle to increasing the size of dynamical networks is the incomplete information, on
the parameters and on the mechanistic details of the interactions. In vivo values of the
parameters depend on crowding and heterogeneity of the intracellular medium, and can
be orders of magnitude different from what is measured in vitro. Furthermore, learning
models from data suffer for non-identifiability and over-fitting problems. Thus, model
reduction is an unavoidable step in the study of large networks, allowing to extract the
essential features of the model, that can then be identified from data. Model reduction in
computational biology should have several features.

First of all, model reduction should cope with parametric incompleteness and/or un-
certainty.

A certain class of reduction methods are parameter independent and automatically
comply with this specificity. In biochemical networks, the number of possible chemi-
cal species grows combinatorially due to numerous possibilities of interactions between
molecules with multiple interaction sites. The exact lumping methods [15, 25] reduce the
number of microstates and avoid combinatorial explosion in the description and analy-
sis of large models of receptor and scaffold signalling. A similar technique [37] is used to
rationally organize supramolecular complexes in rule-based modeling [29] of biochemical
networks. Other, parameter independent, coarse-graining techniques are graphical methods
formalizing node deletion and merging operations in biochemical networks [42], pooling of
metabolites in large scale metabolic networks [106, 72], or extensive searches in the set of

39
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all possible lumps [34]. Finally, qualitative reduction methods were used to simplify large
logical regulatory graphs, adequately suppressing nodes and defining sub-approximating
dynamics [99, 100].

Secondly, biochemical processes governing network dynamics span over many timescales.
For example, changing gene expression programs can take hours and even days while pro-
tein complex formation goes on the second scale and post-translational protein modifica-
tions take minutes to happen. Protein life half-times can vary from minutes to days. Model
reduction can strongly benefit from the network multiscaleness. Asymptotic dynamics of
networks with slow and fast processes, can be strongly simplified using various ideas such
as inertial and invariant manifolds (IM) and averaging approximations.

The iterative methods of IM aim to find a slow low dimensional IM, containing the
asymptotic dynamics [51, 52, 116]. The Computational Singular Perturbation (CSP) [80,
19] aims to find even more, the slow IM and, in addition, the geometry of its fast foliation.
Invariant manifolds can be calculated by various other methods [53, 55, 116, 74, 77].

Very popular are the methods for computation of “first approximations” to the slow
IM. The classical quasi steady-state approximation (QSS) was proposed by [13] and was
elaborated into an important tool for analysis of chemical reaction mechanism and kinetics
[123, 20, 66]. The classical QSS is based on the relative smallness of concentrations of some
of active reagents (radicals, concentration of enzyme and substrate-enzyme complexes, or
amount of active centers on the catalyst surface) [6, 122, 148]. The quasi-equilibrium ap-
proximation (QE) has two basic formulations : the thermodynamic approach, based on
conditional entropy maximum (or free energy conditional minimum), or the kinetic formu-
lation, based on equilibration of fast reversible reactions. The very first use of the entropy
maximum dates back to Gibbs [43]. Corrections to QE approximation with applications
to physical and chemical kinetics were developed by [54, 53]. An important, still unsolved,
problem of these two approximations is the detection of QSS species and QE reactions
without application of all machinery of the IM or CSP methods. Indeed, not all reactions
with large constants are at quasi-equilibrium, and there are no simple rules to find QSS
species if there is no such hints as a small amount of a conserved quantity (like the total
concentration of enzyme). The method of Intrinsic Low Dimensional Manifolds (ILDM)
[89, 18] provides an approximation of a low dimensional invariant manifold and works as
a first step of CSP [73].

Another method allowing to simplify multiscale dynamics is averaging. This idea can be
tracked back to Poincaré’s perturbative treatment of the many body problem in celestial
mechanics [107], further developed in classical mechanics by other authors [7, 88], and
also known as adiabatic or Born-Oppenheimer approximation in quantum mechanics [94].
Rather generally, averaging can be applied when some fine scale variables of the system
are rapidly oscillating. Then, the dynamics of slow, coarse scale variables, can be obtained
by time averaging the system over a timescale much larger than the period of the fast
oscillations. The way to perform averaging, depends on the structure of the system, namely
on the definition of the coarse grained and fine variables [14, 8, 3, 121, 2, 47, 127].

Some of these ideas have been implemented in computational biology tools. Systems
biology markup language SBML [70] can allocate a ”fast” attribute to reaction elements.
Fast reaction specification can be taken into account by computational biology softwares
such as VirtualCell [129] that implements a QE approximation algorithm [128]. Similarly,
the simulation tool COPASI [69] implements the ILDM method [135].

Finally, multiscaleness does not uniquely apply to timescales, but equivalently to abun-
dances of various species in these networks. mRNA copy numbers can change from some
units to tens of thousands, and the dynamic concentration range of biological proteins can
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reach up to five orders of magnitude. Furthermore, the DNA molecule has only one or a
few copies. Low copy numbers lead, directly or indirectly (a species can be stochastic even
if present in large copy numbers), to stochastic gene expression. In computational biology,
model reduction should thus cope not only with deterministic, but also with stochastic
and hybrid models. The need to reduce large scale stochastic models is acute. Indeed,
stochastic simulation algorithm (SSA, [44, 45]) can be very expensive in computer time
when applied to large unreduced models, precluding model analysis and identification. For
this reason, extensive effort has been dedicated to adapting the main ideas used for model
reduction of deterministic models, namely exact lumping, invariant manifolds, QSS, QE,
and averaging, to the case of stochastic models.

Reduction of stochastic rule-based models, based on a weakened version of the exact
lumpability criterion, has been proposed by [38] to define abstract species or stochastic-
fragments that can be further used in simplified calculations. More generally, rule-based
models alow to overcome combinatorial complexity in stochastic simulations [30]. The per-
formance of rule-based stochastic simulators such as NFsim [130] scales independently of
the reaction network size. Yet NFSim still suffers from the size of the population (num-
ber of molecules) and the choice of data-structures forbids in this case approximations
such as tau-leaping. Approximate reduction of the number of states of the Markov chains
describing stochastic networks were proposed in [98].

Multiscaleness of stochastic networks is two-fold, it affects both species and reaction
rates. This has been exploited in hybrid stochastic simulation schemes that are, for the most
of them, based on a partition of the biochemical reactions in fast and slow reactions [64,
17, 5, 65, 4, 117, 75, 63, 134, 118, 60, 11, 83, 50, 105]. Conversely, mixed partitions, using
both reactions and species can exploit both types of multiscaleness and more appropriately
unravel a rich variety of stochastic functioning regimes such as piece-wise deterministic,
switched diffusions, diffusions with jumps, as well as averaged processes [114, 27, 26] only
partially covered by some situations discussed in [91].

Machine learning approaches to parameter identification [49] could profit from Fokker-
Planck approximations, also known as diffusion approximations or Langevin approach, of
the master equation describing dynamics of stochastic networks. Traditional approaches
such as central limit theorem [46, 93], the Ω and the Kramers-Moyal expansions [114, 27]
where used to derive diffusion approximations. Alternatively, [36] propose diffusion ap-
proximations for slow/fast stochastic networks, in which the drift and diffusion parame-
ters were obtained numerically. More recently, these parameters were derived directly from
the master equation of stochastic networks with species in small and large copy numbers
[113]. Furthermore, by the ergodic theorem, time averaging of multiscale stochastic mod-
els boils down to a QE assumption for the fast variables. This idea has been used in [27]
to reduce stochastic networks. A few computational biology tools implement stochastic
approximations [118].

With the exception of the parameter independent methods, all the model reduction
methods described above need a full parametrization of the model. This is a stringent
requirement, and can not be easily bypassed. Indeed, the reduction has a local validity.
The elements defining a reduced model such as IM, QSS species, QE species, depend on
the model parameters and also on the position in phase space and along trajectories. What
one can expect is that model reduction is robust, i.e. a given reduced model provides an
accurate approximation of the dynamics of the initial model for a wide range of parameters
and variables values. One can show that this property is satisfied by biochemical networks
with separated constants, because in this case the simplified networks depend on the
order relations among model parameters and not on the precise values of these parameters
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[56, 112, 103].
In this chapter we will revisit the fundamental concepts of model reduction in the light

of a new framework, that should, in the long term, lead to a new generation of reduction
tools satisfying all the specific requirements of computational biology. This framework is
based on tropical analysis ideas.

2.2 Deterministic dynamical networks

To construct a dynamic reaction network we need the list of components, A = {A1, ... An}
and the list of reactions (the reaction mechanism) :∑

i

αjiAi 

∑
k

βjkAk, (2.2.1)

where j ∈ [1, r] is the reaction number.
Dynamics of nonlinear networks in homogeneous isochoric systems (fixed volume) is

described by a system of differential equations :

dc

dt
= P (c) =

r∑
j=1
νj(R+

j (c)−R−j (c)). (2.2.2)

Here, c ∈ Rn is the concentration vector, and P (c) is a vector field on the space of
concentrations. For each reaction j, νj = βj − αj is the global stoichiometric vector.
The reaction rates R+/−

j (c) are non-linear functions of the concentrations. For instance,
the mass action law reads R+

j (c) = k+
j

∏
i c
αji

i , R−j (c) = k−j
∏
i c
βji

i , in which case the
component i of the vector field, Pi(c), is a multivariate polynomial on the concentrations
cj .

2.3 Multi-scale reduction of monomolecular reaction net-
works

Monomolecular reaction networks are the simplest reaction networks. The structure of
these networks is completely defined by a digraph, in which vertices correspond to chemical
species Ai, edges correspond to reactions Ai → Aj with kinetic constants kji > 0.

The kinetic equation is

dci
dt

=
∑
j

kijcj −

∑
j

kji

 ci, i ∈ [1, n], (2.3.1)

or in matrix form : ċ = Kc.
The solutions of (2.3.1) can be expressed in terms of left and right eigenvectors of the

kinetic matrix K :

c(t) =
n−1∑
k=0

rk < lk, c(0) > exp(−λkt), (2.3.2)

where Krk = λkr
k, and lkK = λkl

k. The zero-th eigenvalue λ0 = 0 corresponds to the
total mass conservation (l0 = (1, 1, . . . , 1)).

Each eigenvalue λk, k > 0 is the inverse of a timescale of the network. A reduced
network having solutions of the type (2.3.2), with eigenvectors rk, lk, and eigenvalues
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λk approximating the eigenvectors and the eigenvalues of the original network is called a
multiscale approximation.

We say that the network constants are totally separated if for all (i, j) 6= (i′, j′) one of
the relations kji << kj′i′ , or kji >> kj′i′ is satisfied.

It was shown in [56, 112, 58] that monomolecular reaction networks with totally sep-
arated constants can be reduced to acyclic and deterministic digraphs while preserving
the multi-scale dynamics. Let us recall that a deterministic digraph is a digraph without
branchings, ie a forest of lassos. An acyclic deterministic digraph is simply a forest. The
proof of this property uses the fact that not only rates constants, but also monomials
rate constants have to be separated. This is true generically for independent, uniformly
distributed random constants (see [56]).

In order to reduce a network with total separation, one needs only qualitative infor-
mation on the constants. More precisely, each edge of the reaction digraph can be labeled
by a positive integer representing the rank of the reaction parameter in the ordered series
of parameter values, the largest parameter (the quickest reaction) having the lowest label.
These integer labels also indicate the timescales of the processes modeled by the network
reactions.

The reduced network is not always a subgraph of the initial graph. It is obtained
from this integer labeled digraph by graph re-writing operations, that can be generically
described as pruning and pooling. Two types of pruning operations are of primary impor-
tance (see also Figure 2.1) :

Rule a) If one has one node from which leave more than one edge, then all the edges are
pruned with the exception of the fastest one (lowest integer label). This operation
corresponds to keeping the dominant term among the terms cikij consuming a species
Ai, and reduces the node outdegree to one. The same principle can not be applied
to reduce the indegree, because which production term is dominant among kijcj ,
j ∈ [1, n], depends not only on kij but also on the concentrations cj .

Rule b) Cycles with separated constants can be transformed into chains, by elimination
of the slowest step. This can be justified intuitively by topology, because any two
nodes of a cycle are connected by two paths, one containing the slowest step and the
other one not containing the slowest step. The latter shortcuts the former.

However, a combination of rules a) and b) is not allowed to prune slow reactions
leaving a cycle and further transform the cycle into a chain by eliminating the limiting
step. Indeed, the total mass of such cycles is slowly decaying because of outgoing reactions.
Pruning the slow reactions that leave a cycle would keep the total cycle mass constant and
produce the wrong long time approximation. In this case, pooling operations are needed :
Rule c) Glue each cycle in the pruned system into a new vertex and transform the network

of all initial reactions into a new one. The concentration of this new component is the
sum of the concentration of the glued vertices. Reactions to the cycles transform into
reactions to the correspondent new vertices (with the same constants). To transform
the reactions from the cycles, we have to calculate the normalized quasi-stationary
distributions inside each cycle (with unit sum of the concentrations in each cycle). Let
for the vertex Ai from a cycle this concentration be c◦i . Then the reaction Ai → Aj
with the constant kji transforms into the reaction from the new (“cycle”) vertex with
the constant kjic◦i . The destination vertex of this reaction is Aj if it does not belong
to a cycle of the pruned system, it is the correspondent glued cycle if it includes Aj
and does not include Ai and the reaction vanishes if both Ai and Aj belong to the
same cycle of the pruned system.
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After pooling we have to prune (Rule a) and so on, until we get an acyclic pruned
system. Then the way back follows : we have to restore cycles and cut them (Rule b).

In more detail, the graph re-writing operations, are described in the Appendix and
illustrated in Figure 2.1. The dynamics of reduced acyclic deterministic digraphs follows
from their topology and from the timescale labels. First of all, let us notice that the network
has as many timescales as remaining edges in the reduced digraph. The computation of
eigenvectors of acyclic deterministic digraphs is straightforward [56, 112, 58]. For networks
with total separation, these eigenvectors satisfy, in the first approximation, a 0 − 1 type
property, the coordinates of lk, rk belong to the sets {0, 1}, and {0, 1,−1} respectively. The
0−1 property of eigenvectors has a non-trivial consequence. On the timescale tk = (λk)−1,
the reduced digraph behaves as an effective reaction (single step approximation). The
effective reaction receives (from reactions acting on smaller timescales) the mass coming
from the species with coordinate 1 in lk (pool) and transfers it (during a time tk) to the
species with coordinate 1 in rk. The successive single step approximations of an acyclic
deterministic digraph are illustrated in Figure 2.2.

Monomolecular networks with separation represent instructive examples where reduc-
tion and qualitative dynamics result from the network topology and from the orders of
magnitude of the kinetic constants. This type of models can be used in computational
biology to reduce linear subnetworks or even binary reactions for which one reactant is
present in much larger quantities than the other (pseudo-monomolecular approximation).

As argued by a few authors, total separation could be a generic property of biochemical
networks [41]. This property can be checked empirically by investigating the distribution
of network timescales in logarithmic scale. Whenever one finds distributions with large
support in logarithmic scale (a log-uniform distribution is equivalent to the Zipf law, i.e.
a power law distribution with exponent −1, well known in critical systems [41]) total
separation is valid and the above reduction method applies.

2.4 Separation, dominance, and tropical geometry

The previously presented algorithm is based on the idea of dominance, which occurs
at many levels. For instance, when several reactions compete for the same pool, all can
be pruned, excepting the dominant one (Rule a)). This simple idea is widely spread, and
corresponds to max-plus algebra : the sum of positive, well separated terms, can be replaced
by the maximum term. Max-plus algebra, that found many applications to dynamical
systems [23, 143, 9], belong to the new mathematical field of tropical geometry [104].
Tropical geometry offers convenient solutions to finding approximate roots of simultaneous
polynomial equations, as well as to simplifying and hybridizing systems of polynomial
or rational ordinary differential equations with separated monomials. Tropical geometry
concepts can be used to rationalize many model reduction operations and find new ones.

The logarithmic transformation ui = log xi, 1 ≤ i ≤ n, well known for drawing graphs
on logarithmic paper, plays a central role in tropical geometry [144].

Let us consider multivariate monomials M(x) = aαx
α, where xα = xα1

1 xα2
2 . . . xαn

n .
Monomials with positive coefficients aα > 0, become linear functions, logM = log aα+ <
α, log(x) >, by this transformation.

There is a straightforward way to use the logarithmic transformation from tropical
geometry in order to obtain approximations of dynamical networks of the type (2.2.2).
Let us suppose that reaction rates are polynomial functions of the concentrations (this is
satisfied by mass action law and obviously, also by monomolecular networks), such that∑r
j=1 νj(R+

j (c)−R−j (c)) =
∑
α∈A aαc

α, A ⊂ Nn, and cα = cα1
1 . . . cαn

n .
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Figure 2.1 – A monomolecular network with total separation can be represented as a
digraph with integer labels (the quickest reaction has label 1). Two simple rules allow to
eliminate competition between reactions (rule a) and transform cycles into chains (rule
b). Rule b can not be applied to cycles with outgoing slow reactions, in which case more
complex, hierarchical rules should be applied (rule c). In the rule c, first the cycle A2 →
A3 → A4 → A2 is “glued” to a new node (pool A2 +A3 +A4) and the constant of the slow
outgoing reaction renormalized to a monomial k5k4/k3. Rule b is applied to the resulting
network, which is a cycle with no outgoing reactions. The comparison of the constants
k5k4/k3 and k6 dictates where this cycle is cut. Finally, the glued cycle is restored, with
its slowest step removed.
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Figure 2.2 – For a given timescale, monomolecular networks with total separation behave
as a single step : the concentrations of some species (white) are practically constant, some
species (yellow) are rapid , low concentration, intermediates, one species (red) is gradually
consumed and another (pink) is gradually produced. We have represented the sequence
of one step approximations of a reduced, acyclic, deterministic digraph, from the quickest
time-scale t1 = λ−1

1 to the slowest one t4 = λ−1
4 . These one step approximations are

activated when mass is introduced at t = 0 via the “boundary nodes” A1 and A6.
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Figure 2.3 – a) The tropical manifold of the polynomial ax + by + cxy on “logarithmic
paper” is a three lines tripod. b) The tropical manifolds for the species ES (in red) and
S (in blue) for the Michaelis-Menten mechanism. The tropicalized flow is also represented
on both sides of the tropical manifolds (with arrows, red on one side, blue on the other
side). Sliding modes correspond to blue and red arrows pointing in opposite directions.

We call tropicalization of the smooth ODE system (2.2.2) the following piecewise-
smooth system :

dci
dt

= si(c) exp[maxα∈Ai{log(|ai,α|)+ < log(c),α >}], (2.4.1)

where log(c) = (log c1, . . . , log cn), si(c) = sign(ai,αmax(c)) and ai,αmax , αmax ∈ Ai denotes
the coefficient of a monomial for which the maximum occurring in (2.4.1) is attained.

The tropicalization associates to a polynomial
∑
α∈A aαc

α, the max-plus polynomial

P τ (c) = exp[maxα∈A{log(|aα|)+ < log(c),α >}].

In other words, a polynomial is replaced by a piecewise smooth function, equal to the
largest, in absolute value, of its monomials. Thus, (2.4.1) is a piecewise smooth model
[101] because the dominating monomials in the max-plus polynomials can change from
one domain to another of the concentration space. The singular set where at least two
of the monomials are equal, and where the max-plus polynomial P τ (c) is not smooth
is called tropical manifold [95]. On logarithmic paper, the tropical manifolds of various
species define polyhedral domains inside which the dynamics is defined by monomial dif-
ferential equations (Figure 2.3). Tropicalized systems remind of, but are not equivalent
to, Savageau’s S-systems [120] that have been used for modeling metabolic networks. S-
systems are smooth systems such that the production and consumption terms of each
species are multivariate monomials. Tropicalized systems are S-systems locally, within the
polyhedral domains defined by the tropical manifolds, and also along some parts of the
tropical manifold (that carry sliding modes, see next section).

The tropicalization unravels an important property of multiscale systems, that is to
have different behavior on different timescales. We have seen that, on every timescale,
monomolecular networks with total separation behave like a single reaction step. This
is akin to considering only the dominant processes in the network and implies that the
tropicalization is a good approximation for monomolecular networks with total separation.

The tropical geometry framework is particularly interesting for nonlinear networks. In
this case, it is less straightforward to define separation rigorously. Very roughly, one can say
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that a system (2.2.2) with polynomial rates is separated, if the monomials composing the
rates are separated almost all the time on a trajectory, or, equivalently, almost everywhere
in phase space (except on the tropical manifolds). Separation of nonlinear models results
either from separated kinetic constants, or from separated species concentrations, or both.
In the next section, we discuss some examples when the tropicalization provides useful
approximations of smooth nonlinear networks.

2.5 Quasi-steady state and Quasi-equilibrium, revisited

Two simple methods are principally useful for model reduction of nonlinear models
with multiple timescales : the quasi-equilibrium (QE) and the quasi-steady state (QSS)
approximations. As discussed in [58, 59], these two approximations are physically and
dynamically distinct. In order to understand these differences let us refer to the simple
example of the Michaelis-Menten mechanism,

S + E
k1


k−1

ES
k2→ P + E (2.5.1)

The QSS approximation, proposed for this system by Briggs and Haldane, considers
that the total concentration of enzyme, Etot = [E] + [ES], is much lower than the total
concentration of substrate, therefore the complex ES is a low concentration, fast species.
The complex concentration is slaved by the concentration of S, meaning that the value
of [ES] almost instantly relaxes to a value depending on [S]. The simplified mechanism
correspond to pooling the two reactions of the mechanism into a unique irreversible reaction
S
R([S],Etot)−→ P , which means that d[P ]

dt = −d[S]
dt = k2[ES]QSS . The QSS value of the complex

concentration results from the equation k1[S](Etot− [ES]QSS) = (k−1 +k2)[ES]QSS . From
this, it follows that R([S], Etot) = k2Etot[S]/(km + [S]), where km = (k−1 + k2)/k1.

The QE approximation considers that the first reaction of the mechanism is a fast,
reversible reaction. The simplified mechanism corresponds to a pooling of species. Two
pools, Stot = [S] + [ES], and Etot = [E] + [ES] are conserved by the fast reversible reac-
tion, but only one, Etot is conserved by the two reactions of the mechanism. The pool Stot
is slowly consumed by the second reaction and represents the slow variable of the system.
The single step approximation reads Stot

R(Stot,Etot)−→ P , or equivalently d[P ]
dt = −dStot

dt =
k2[ES]QE . The QE value of the complex concentration is the unique positive solution of
the quadratic equation k1(Stot−[ES]QE)(Etot−[ES]QE) = k−1[ES]QE . From this it follows
thatR(Stot, Etot) = 2k2EtotStot(Etot+Stot+k−1/k1)−1(1+

√
1− 4EtotStot/(Etot + Stot + k−1/k1)2)−1.

When the concentration of enzyme is small, Etot << Stot, we obtain the original equation
of Michaelis and Menten, R(Stot, Etot) ≈ k2

EtotStot
k−1/k1+Stot

.
One of the main difficulties to applying QE or QSS reduction to computational biology

models is that QE reactions and QSS species should be specified a priori. For some models,
biological information can be used to rank reactions according to their rates. For instance,
one knows that metabolic processes and post-transcriptional modifications are more rapid
than gene expression. However, this information is rather vague. In detailed gene expression
models, some processes can be rapid, while others are much slower. Furthermore, the
relative order of these processes can be inverted from one functioning regime to another,
for instance the binding and unbinding rates of a repressor to DNA, can be slow or fast
depending on various conditions. Even if some numerical approaches such as iterative IM,
CSP and ILDM propose criteria for detecting fast and slow processes, at present there is
no general direct method to identify QE reactions and QSS species.
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Here we present two methods, based, the first one on singular perturbations, and the
second on tropical geometry ideas, allowing to detect QE reactions and QSS species.

The first method uses simulation of the trajectories, therefore it can only be applied to
a fully parametrized model. However, in systems with separation, the sets of QE reactions
and QSS species are robust, ie remain the same for broad ranges of the parameters. One
can use imprecise parameters (resulting for instance from crude estimates or fitting) to
compute these sets. The method starts by detecting slaved species. Given the trajectories
c(t) of all species, the imposed trajectory of the i-th species is a real, positive solution
c∗i (t) of the polynomial equation

Pi(c1(t), . . . , ci−1(t), c∗i (t), ci+1(t), . . . , cn(t)) = 0, (2.5.2)

where Pi is the i-th component of the rhs of (2.2.2). We say that a species i is slaved if
the distance between the trajectory ci(t) and some imposed trajectory c∗i (t) is small for
some time interval I, supt∈I | log(ci(t))− log(c∗i (t))| < δ, for some δ > 0 sufficiently small.
The remaining species, that are not slaved, are called slow species.

Slaved species are rapid and are constrained by the slow species. The minimum number
of variables that we expect for a reduced model is equal to the number of slow species. The
slow species can be obtained by direct comparison of the imposed and actual trajectories.
This method is illustrated for a model of NFκB canonical pathway in Figure 2.4.

There are two types of slaved species. Low concentration, slaved species satisfy QSS
conditions. Large concentration, slaved species are consumed and produced by fast QE
reactions and satisfy QE conditions. Because the reduction schemes are different in the
two situations, it is useful to have a method to separate the two cases. Using the values
of concentrations can work when concentrations are well separated, but may fail for a
continuum of values. A better method is to identify which are the dominant terms in
the Eq.(2.5.2). Using again the example of Michaelis-Menten mechanism, the complex ES
will be detected as slaved in both QSS and QE conditions. Eq.(2.5.2) reads k1[S][E] =
(k−1 + k2)[ES]. For QE condition, the term k2 will be dominated by k−1. We call pruned
version of Eq.(2.5.2) the equation obtained after removing all the dominated monomials, in
this case the equation k1[S][E]− k−1[ES] = 0. When the pruned version is a combination
of reversible reaction rates set to zero, then the slaved species satisfy QE conditions. Again,
the comparison of monomials is possible for a fully parametrized model, however we expect
this comparison to be robust for models with separation.

The second method to identify QE and QSS conditions, follows from the calculation
of the tropicalization (2.4.1). This can be done formally and do not require simulation of
trajectories and numerical knowledge of the parameters. Indeed, is was shown in [101] that
there is a relation between sliding modes of the tropicalized system (2.4.1) and the QSS or
QE conditions. The system (2.4.1) belongs to the class of ordinary differential equations
with discontinuous vector fields [40]. In such systems, the dynamics can follow discontinuity
hypersurfaces where the vector field is not defined. This type of motion is called sliding
mode. When the discontinuity hypersurfaces are smooth and n− 1 dimensional (n is the
dimension of the vector field) then the conditions for sliding modes read :

< n+(x),f+(x) >< 0, < n−(x),f−(x) >< 0, x ∈ Σ, (2.5.3)

where f+,f− are the vector fields on the two sides of Σ and n+ = −n− are the interior
normals.

Let us consider that the smooth system (2.2.2) with polynomial rate functions has
quasi-steady state species or quasi-equilibrium reactions. In this case, the fast dynamics
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Figure 2.4 – Model reduction and tropicalization of a 5 variables cell cycle model de-
fined by the differential equations y′1 = k9y2 − k8y1 + k6y3, y′2 = k8y1 − k9y2 − k3y2y5,
y′3 = k′4y4 + k4y4y

2
3/C

2 − k6y3, y′4 = −k′4y4 − k4y4y
2
3/C

2 + k3y2y5, y′5 = k1 − k3y2y5, pro-
posed in [140]. (A) Comparison of trajectories and imposed trajectories show that variables
y1, y2, y5 are always slaved, meaning that the trajectories are close to the 2 dimensional
hyperplane defined by the QE condition k8y1 = k9y2, the QSS condition k1 = k3y2y5 and
the conservation law y1 + y2 + y3 + y4 = C. The variables y3, y4 are slaved and the cor-
responding species are quasi-stationary on intervals. This means that the dimensionality
of the dynamics is further reduced to 1, on intervals. (B) Tropicalization on logarithmic
paper, in the plane of the variables y3, y4. The tropical manifold consists of two tripods,
represented in blue and red, which divide the logarithmic paper into 6 polygonal sectors.
Monomial vector fields defining the tropicalized dynamics change from one polygonal do-
main to another. The tropicalized (approximated) and the smooth (not reduced) limit
cycle dynamics stay within bounded distance one from another. This distance is relatively
small on intervals where the variables y3 or y4 are quasi-stationary, which correspond to
sliding modes of the tropicalization.
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reads :
dxi
dt

= 1
ε
P̃i(x)/Q̃i(x), i fast, (2.5.4)

where P̃i(x), Q̃i(x) are pruned versions of Pi, Qi (obtained by keeping only the lowest
order terms), and ε is the small, singular perturbation parameter.

For sufficiently large times, the fast variables satisfy (to O(ε)) :

P̃i(x) = 0, i fast. (2.5.5)

The pruned polynomial is usually a fewnomial (contains a small number of mono-
mials). In particular, let us consider the case when only two monomials remain after
pruning, P̃i(x) = a1x

α1 + a2x
α2 . Then, the equation (2.5.5) defines a hyperplane S = {<

log(x), α1 − α2 >= log(|a1|/|a2|)}. This hyperplane belongs to the tropical variety of P̃i,
because it is the place where the monomial xα1 switches to xα2 in the max-plus polyno-
mial defined by P̃i. For ε small, the QE of QSS conditions guarantee the existence of an
invariant manifold Mε, whose distance to S is O(ε).

Let n+, n− defined as above and let (f+)i = 1
Q̃i(x)a1x

α1 , (f−)i = 1
Q̃i(x)a2x

α2 , fi =
1
ε [(f+)i + (f−)i] for i fast, (f+)j = (f−)j = fj = P̃j

Q̃j
, for j not fast. Then, the stability con-

ditions for the invariant manifold read < n+(x+), f(x+) >< 0, < n−(x−), f(x−)) >< 0,
where x+, x− are close to Mε on the side towards which points n+ and n−, respectively.
We note that |(f+)i(x+)| > |(f−)i(x+)|. Thus, < n+, f >= 1

ε (n+)i[(f+)i + (f−)i] +∑
j,notfast(n+)j(f+)j and < n+, f+ >= 1

ε (n+)i(f+)i +
∑
j,notfast(n+)j(f+)j . Thus, if <

n+, f >< 0, then for ε small enough (n+)i(f+)i < 0 and < n+, f+ >< 0 because
< n+, f >>< n+, f+ >. Similarly, we show that < n−, f >< 0 implies < n−, f− >< 0.
This proves the following

Theorem 2.5.1. If the smooth dynamics obeys QE or QSS conditions and if the pruned
polynomial P̃ defining the fast dynamics is a 2-nomial, then the QE or QSS equations
define a hyperplane of the tropical variety of P̃ . The stability of the QE of QSS manifold
implies the existence of a sliding mode of the tropicalization along this hyperplane.

This result suggests that checking the sliding mode condition (2.5.3) on the tropical
manifold, provides a method of detecting QE reactions and QSS species.

To illustrate this method, let us use again the Michaelis-Menten example. In this case,
two conservation laws allow elimination of two variables E and P and the dynamics can
be described by two ODEs :

d[S]
dt

= −k1Etot[S] + k1[S][ES] + k−1[ES]

d[ES]
dt

= k1Etot[S]− k1[S][ES]− (k−1 + k2)[ES] (2.5.6)

The tropical manifolds of the two species S and ES are tripods with parallel arms like
in Figure 2.3. Indeed, the slopes of the arms of tropical manifold are only given by
the powers of different variables of the monomials, and these are the same for the two
species. Investigation of the flow field close to the tripod arms identifies sliding modes
on an unbounded subset AOB of the tropical manifold of the species ES. This subset
is a global attractor of the tropicalized dynamics and represents a tropicalized version
of the invariant manifold of the smooth system. If the initial data is not in this set,
the tropicalized trajectory converges quickly to it and continues on it as a sliding mode.
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When k2 >> k−1, ES satisfies QSS conditions leading to the Michaelis-Menten equa-
tion. The arm AO of the tropical manifold of the species ES carry a sliding mode, has
the equation k1Etot[S] = (k−1 + k2)[ES] >> k1[S][ES], and corresponds to the linear
regime of the Michaelis-Menten equation. Similarly, the arm OB of the tropical manifold
of ES has the equation k1Etot[S] = k1[S][ES] >> (k−1 + k2)[ES] and corresponds to
the saturated regime of the Michaelis-Menten equation. When k2 << k−1, the tropical
manifolds of the two species S and ES practically coincide. Both species are rapid and
satisfy QE conditions, namely k1Etot[S] = k−1[ES] >> k1[S][ES] on the arm AO, and
k1Etot[S] = k1[S][ES] >> k−1[ES] on the arm OB.

The tropicalization can thus be used to obtain global reductions of models. Even when
global reductions are not possible (sliding modes leave the tropical manifold or simply do
not exist), the tropicalization can be used to hybridize smooth models, ie transform them
into piecewise simpler models (modes) that change from one time interval to another.
These changes occur when the piecewise smooth trajectory of the system meets a hyper-
plane of the tropical manifold and continues as a sliding mode along this hyperplane or
leaves immediately the hyperplane. Hybridization is a particularly interesting approach to
modeling cell cycle. Indeed, progression of the cell cycle is a succession of several different
regimes (phases). This strategy is illustrated in Figure 2.4 for a simple cell cycle model.

2.6 Graph rewriting for large nonlinear, deterministic, dy-
namical networks

We have seen in Section 2.3 that model reduction of monomolecular networks with
total separation is based on graph rewriting operations.

Similarly, QSS and QE approximations can be used to produce simpler networks from
large nonlinear networks. The classical implementation of these approximations leads to
differential-algebraic equations. It is however possible to reformulate the simplified model
as a new, simpler, reaction network. We showed in the previous section how to do this
for the Michaelis Menten mechanism under different conditions. In general, one has to
solve the algebraic equations corresponding to QE or QSS conditions, eliminate (prune)
QSS species and QE reactions, pool reactions (for QSS approximation) or species (for QE
approximation), and finally calculate the kinetic laws of the new reactions.

By reaction pooling we understand here replacing a set of reactions by a single reaction
whose stoichiometry vector ν is the sum of the stoichiometry vectors νi of the reactions
in the pool, ν =

∑
i γiνi. If the reactions are reversible then the coefficients γi can be ar-

bitrary integers, otherwise they must be positive integers. Reaction pools conserve certain
species that where previously consumed or produced by individual reactions in the pools.
These species were called intermediates in [112]. The species that are either produced or
consumed by the pools were called terminal in [112]. For example, an irreversible chain of
reactions A1 → A2 → A3 can be pooled onto a single reaction A1 → A3, which in terms of

stoichiometry vectors reads

−1
0
1

 =

−1
1
0

 +

 0
−1
1

. In this example A1, A3 are terminal

species and A2 is an intermediate species. Reaction pooling is used with QSS conditions,
in which case the intermediates are the QSS species.

By species pooling we understand replacing a set of species concentrations {ci} by
a linear combination with positive coefficients of species concentrations,

∑
i bici. Species

pooling is used with QE conditions.
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In general, the reaction and species pools result from linear algebra. Indeed, let us
consider the matrix Sf that defines the stoichiometry of the rapid subsystem. For the
QSS approximation, the matrix Sf has a number of lines equal to the number of QSS
species. The columns of this matrix are the stoichiometries of the reactions in the model,
restricted to the QSS species. We exclude zero valued columns, i.e. reactions that do not
act on QSS species. For the QE approximation, the number of columns of the matrix Sf
is equal to the number of QE reactions, and the lines of Sf are the stoichiometries of QE
reactions. We exclude zero valued lines corresponding to species that are not affected by
QE reactions.

In QE conditions, species pools are defined by vectors in the left kernel of Sf ,

bTSf = 0 (2.6.1)

The vectors b, that are conservation laws of the fast subsystem, define linear combina-
tions of species concentrations that are the new slow variables of the system. Of course,
one could eliminate from these combinations, the conservation laws of the full reaction
network, that will be constant (see Appendix).

In QSS conditions, reaction pools (also called routes) are defined by vectors in the right
kernel of Sf ,

Sfγ = 0 (2.6.2)

According to the definition (2.6.2), a reaction pool does not consume or produce QSS
species (these are intermediates). One can impose, like in [112], a minimality condition for
choosing the reaction pools. A reaction pool is minimal if there is no other reaction pool
with less nonzero stoichiometry coefficients. This is equivalent to choosing reaction pools
as elementary modes [145] of the fast subsystem.

After pooling, QE and QSS algebraic conditions must be solved and the rates of the
new reactions calculated. The new rates should be chosen such that the remaining species
and pools of species satisfy the simplified ODEs. The choice of the rates is not always
unique (some uniqueness conditions are discussed in [112], see also the Appendix). In
order to compute the new rates, one has to solve QE and QSS equations. For network with
polynomial or rational rates, this implies solving large systems of polynomial equations.
The complexity of this task is double exponential on the size of the system [103], therefore
one needs approximate solutions. Approximate solutions of polynomial equations can be
formally derived when the monomials of these equations are well separated. Some simple
recipes were given in [112] and could be improved by the methods of tropical geometry.

These ideas were used in [112] to reduce several models of NF-κB signalling (Figure
2.5).

The NF-κB activation pathway is complex at many levels. NF-κB is sequestered in
the cytoplasm by inactivating proteins named IκB. There are five known members of the
NF-κB family in mammals, Rel (c-rel), RelA (p65), RelB, NF-κB1 (p50 and its precur-
sor p105) and NF-κB2 (p52 and its precursor p100). This generates a large combinatorial
complexity of dimers, affinities and transcriptional capabilities. IκB family comprises seven
members in mammals (IκBα, IκBβ, IκBε, IκBγ, Bcl-3). All these inhibitors display differ-
ent affinities for NF-κB dimers, multiplying the combinatorial complexity. The activation
of NF-κB upon signalling, occurs by phosphorylation by a kinase complex, then ubiquiti-
nation, and finally degradation of IκB molecules. The activation signal is transmitted by
several possible pathways most of them activating the kinase IKK that modifies IκB. In
the canonical pathway, one important determinant of IKK dynamics is the protein A20
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Figure 2.5 – Model of NF-κB signaling (BIOMD0000000227 in Biomodels database [81]),
proposing separate production of the subunits p50, p65, the full combinatorics of their
interactions as well as with the inhibitor IκB, the positive self-regulation of p50, and in
addition an A20 molecule whose production is enhanced upon NF-κB stimulation, and
which negatively regulates the activity of the stimulus responding kinase IKK [112]. This
model, denoted M (39, 65, 90) contains 39 species, 65 reactions and 90 parameters. We
have reduced it to various levels of complexity. Among the reduced model we obtained one,
M (14, 25, 33) that has the same stoichiometry (but different rate functions) as a model
published elsewhere by another author [86] and denoted M (14, 25, 28) (BIOMD0000000226
in Biomodels database). Incidently, this is also the simplest model in the hierarchy related
to M (39, 65, 90). Comparison (not shown) of the rate functions and of the trajectories
of the models M (14, 25, 33) and M (14, 25, 28) provided insight into the consequences of
various mechanistic modeling choices. The model graphical representation is based on the
SBGN standard [82].

that inhibits IKK activation. A20 expression is controlled by NF-κB. In order to cope
with this complexity a model containing 39 species, 65 reactions and 90 parameters was
proposed in [112]. Of course, not all reactions and parameters of this complex model are
important. In order to determine, in a rational and systematic way, which of the model
features are critical, we have used model reduction.

Graph rewriting was performed in a modular way, by applying the pruning and pool-
ing rules to tightly connected submodels of the NF-κB network. The computation of the
reaction pools was performed using Matlab and METATOOL [145]. Using submodel de-
composition reduces the complexity of computing elementary modes and of solving large
systems of algebraic equations needed for recalculating the reaction rates.

To give an example of modular reduction, let us consider the set of reactions involving



2.7. MODEL REDUCTION AND MODEL IDENTIFICATION 55

six cytoplasmic located intermediates (IKK|active, IKK|inactive, IKK, IKK|active :IkBa,
IKK|active :IkBa :p50 :p65, p50 :p65@csl) and four terminal species (A20, IkBa@csl,
IkBa :p50 :p65@csl, p50 :p65@ncl). As can be seen from Figure 2.6, the six interme-
diate species are slaved. The reactions of this submodel form the cytoplasmic part of
the signalling mechanism, including 11 kinase transformation reactions, a complex re-
lease reaction, a complex formation reaction, and the NF-κB translocation reaction. The
elementary modes of the submodel (computed using METATOOL [145]) are used to de-
fine the reactions pools. For this submodel, we find two elementary modes, that can be
described as the modulated inhibitor degradation (IkBa@csl → ∅), and a reaction sum-
marizing the NF-κB release and translocation (IkBa :p50 :p65@csl → p50 :p65@ncl),
respectively. In order to compute the reaction rates of the two elementary modes as func-
tions of the concentrations of the terminal species, we find approximate solutions of the
QSS equations for the intermediate species and equate, for the variation rates of each
terminal species, the contributions of elementary modes to the total known variation rate
in the unreduced model (see Appendix). The two rates are k21p1[IkBa@csl][IkBa : p50 :
p65@csl]/((k21p2 + [IkBa@csl])(k21p3 + [A20])) for the modulated inhibitor degradation,
and k15p1[IkBa : p50 : p65@csl]/((k15p2 + [IkBa@csl])(k15p3 + [A20])) for the release and
translocation reaction.

2.7 Model reduction and model identification

Computational biology models contain mechanistic details that can not all be identi-
fied from available experimental data. Determining the parameters of such complex models
could lead to overfitting, describing noise, rather than features of data, or can be simply
meaningless, when model behavior is not sensitive to the parameters. Furthermore, many
model identification methods [49] suffer from the ”curse of dimensionality” as it becomes
increasingly difficult to cover the parameter space when the number of parameters in-
creases. A rather efficient strategy to bypass these problems is to use model reduction.
This method is known in machine learning as backward pruning or post-pruning [147].
It consists in finding a complex model that fits data well and then prune it back to a
simpler one that also fits the data well. Far from being redundant, backward pruning can
be successfully used in computational biology. Rather often, one starts with a complex
model coping with mechanistic details of the network regulation. Then, over-fitting and
problems of identifiability of the parameters are avoided by model reduction. By model
reduction, the mechanistic model is mapped onto a simpler, phenomenological model. For
instance, gene transcription and translation can be represented as one step and one con-
stant in a phenomenological model, but can consist of several steps such as initiation,
transcription of mRNA leading region, ribosome binding, translation, folding, maturation,
etc. in a complex model. Not all of these steps are important for the network functioning
and not all parameters are identifiable from the observed quantities. Following reduction,
the inessential steps are pruned and several sensitive parameters are compacted into a few
effective parameters that are identifiable.

As discussed in [111, 112, 110, 39], model reduction unravels the important features
and the sensitive parameters of the model.

Using model reduction for determining critical features of the model has many ad-
vantages relative to numerical sensitivity studies [109, 61, 71]. This approach is less time
consuming, brings more insight, and is based on qualitative comparison of the order of
the parameters and therefore does not need exhaustive scans of parameter values. In the
applications described in [111, 112, 110, 39], the sensitive parameters of the pruned model



56 CHAPITRE 2. MODEL REDUCTION FOR COMPUTATIONAL BIOLOGY MODELS

Figure 2.6 – The modulus of the log-ratio, | log(ci(t)/c∗i (t))|, between actual and imposed
trajectories has been calculated as a function of time for each species of the model of NFκB
canonical pathway (proposed in [86], model M (14, 25, 28) from [112]). If the modulus is
close to zero (ratio close to one fold from above, or from below) the species is slaved,
otherwise the species is slow. Among the slaved species, some have low concentrations
and satisfy quasi-steady-state conditions, whereas other have large concentrations and are
involved in quasi-equilibrium reactions.
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are combinations (most often monomials) of the parameters of the complex models. As
only the sensitive combinations can be fitted from data, it is important to have estimates
of some individual parameters, allowing to determine the remaining ones.

This methodology has been first proposed in [112]. The model reduction of the NF-κB
model in [112] leads to new, effective parameters that are monomials of the parameters of
the complex model. The correspondence between the initial parameters and the effective
parameters is shown in Figure 2.7. Although not fully exploited in the theoretical study
[112], this mapping can be used for model parameter identification. Effective parameters
have increased observability and could be obtained from experimental data. The values
of the effective parameters can be used to constrain the parameters of the full model.
Some of the parameters of the full model, that are not sensitive or contribute to effective
parameters together with other parameters remain arbitrary and could be fixed to generic
values.

Figure 2.7 – The model M (14, 25, 28) from [112] (first proposed in [86], see also
BIOMD0000000226 in Biomodels database) was used to generate a hierarchy of simpler
models, the simplest one being M (5, 8, 15). We show the mapping between the parameters
of the models M(14, 25, 28) and M(5, 8, 15). Parameters of the first model are gathered
into monomials that are parameters of the reduced model. The integers on the arrows
connecting parameters represent the corresponding powers of the parameters in the mono-
mial. The innermost circle represents a dynamical property of the model that is influenced
positively, negatively, or negligibly by the effective parameters (parameters of the reduced
model). From [112].
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2.8 Conclusion

The mathematical techniques described in this paper define strategies for the study
of large dynamical network models in computational biology. Large networks are needed
in order to understand context dependence, specialization, and individuality of the cell
behavior. Extensive pathway database accumulation supports somehow the idea that bi-
ological cell is a puzzle of networks and pathways, and that once these are put together
in a tightly bound, coherent map, the cell physiology should be unraveled by a computer
simulation. Actually, confronting biochemical networks with real life is not an easy chal-
lenge. Model reduction techniques are needed to bring us one step closer to this objective,
as these methods can reveal critical features of complex organizations.

We have proposed that the ideas of limitation and dominance are fundamental for
understanding computational biology dynamical models. The essential, critical features
of systems with many separated time scales, can be resumed by a dominant, reduced,
subsystem. This dominant subsystem depends on the order relations between model pa-
rameters or combinations of model parameters. We have shown how to calculate such a
dominant subsystem for linear and nonlinear networks. Geometrical interpretation of these
concepts in terms of tropicalization provides a powerful framework, allowing to identify in-
variant manifolds, quasi-steady state species and quasi-equilibrium reactions. We have also
discussed how model reduction can be applied to backward pruning parameter learning
strategies.

Future efforts are needed to extend these mathematical ideas and model reduction
algorithms and implement them into computational biology tools.

2.9 Algorithms

2.9.1 Algorithm 1 : reduction of monomolecular networks with separa-
tion

This algorithm consists of three procedures.
I. Constructing of an auxiliary reaction network : pruning.
For each Ai branching node (substrate of several reactions) let us define κi as the

maximal kinetic constant for reactions Ai → Aj : κi = maxj{kji}. For correspondent j we
use the notation φ(i) : φ(i) = arg maxj{kji}.

An auxiliary reaction network V is the set of reactions obtained by keeping only
Ai → Aφ(i) with kinetic constants κi and discarding the other, slower reactions. Auxiliary
networks have no branching, but they can have cycles and confluences. The correspondent
kinetic equation is

ċi = −κici +
∑
φ(j)=i

κjcj , (2.9.1)

If the auxiliary network contains no cycles, the algorithm stops here.
II gluing cycles and restoring cycle exit reactions
In general, the auxiliary network V has several cycles C1, C2, ... with lengths τ1, τ2, ... >

1.
These cycles will be “glued” into points and all nodes in the cycle Ci, will be replaced

by a single vertex Ai. Also, some of the reactions that were pruned in the first part of the
algorithm are restored with renormalized rate constants. Indeed, reaction exiting a cycle
are needed to render the correct dynamics : without them, the total mass accumulates in
the cycle, with them the mass can also slowly leave the cycle. Reactions A→ B exiting from
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cycles (A ∈ Ci, B /∈ Ci) are changed into Ai → B with the rate constant renormalization :
let the cycle Ci be the following sequence of reactions A1 → A2 → ...Aτi → A1, and
the reaction rate constant for Aj → Aj+1 is kj (kτi for Aτi → A1). The quasi-stationary
normalized distribution in the cycle is :

c◦j = 1
kj

 τi∑
j=1

1
kj

−1

, j = 1, . . . , τi .

The reaction Aj → B (A ∈ Ci, B /∈ Ci) with the rate constant k is changed into Ai → B
with the rate constant c◦jk.

Let the cycle Ci have the limiting steps that is much slower than other reactions. For
the limiting reaction of the cycle Ci we use notation klim i. In this case, c◦j = klim i/kj . If
A = Aj and k is the rate constant for A→ B, then the new reaction Ai → B has the rate
constant kklim i/kj . This rate is obtained using quasi-stationary distribution for the cycle.

The new auxiliary network V 1 is computed for the network with glued cycles. Then we
prune it, extract cycles, glue them, iterate until a acyclic network is obtained V m, where
m is the number of iterations.

III Restoring cycles
The previous procedure gives us the sequence of networks V 1, . . . ,V m with the set of

vertices A 1, . . . ,A m and reaction rate constants defined for each V i in the processes of
pruning and gluing.

The dynamics of species inside glued cycles is lost after their gluing. A full multi-
scale approximation (including relaxation inside cycles) can be obtained by restoration of
cycles. This is done starting from the acyclic auxiliary network V m back to V 1 through
the hierarchy of cycles. Each cycle is restored according to the following procedure :

– We start the reverse process from the glued network V m on A m. On a step back,
from the set A m to A m−1 and so on, some of glued cycles should be restored and cut.
On the qth step we build an acyclic reaction network on the set of vertices A m−q,
the final network is defined on the initial vertex set and approximates relaxation of
the initial networks.

– To make one step back from V m let us select the vertices of A m that are glued
cycles from V m−1. Let these vertices be Am1 , A

m
2 , .... Each Ami corresponds to a

glued cycle from V m−1, Am−1
i1 → Am−1

i2 → ...Am−1
iτi

→ Am−1
i1 , of the length τi. We

assume that the limiting steps in these cycles are Am−1
iτi

→ Am−1
i1 . Let us substitute

each vertex Ami in V m by τi vertices Am−1
i1 , Am−1

i2 , ...Am−1
iτi

and add to V m reactions
Am−1
i1 → Am−1

i2 → ...Am−1
iτi

(that are the cycle reactions without the limiting step)
with corresponding constants from V m−1.

– If there exists an outgoing reaction Ami → B in V m then we substitute it by the
reaction Am−1

iτi
→ B with the same constant, i.e. outgoing reactions Ami → ... are

reattached to the heads of the limiting steps. Let us rearrange reactions from V m

of the form B → Ami . These reactions have prototypes in V m−1 (before the last
gluing). We simply restore these reactions. If there exists a reaction Ami → Amj then
we find the prototype in V m−1, A→ B, and substitute the reaction by Am−1

iτi
→ B

with the same constant, as for Ami → Amj .
– After the previous step is performed, the vertices set is A m−1, but the reaction set

differs from the reactions of the network V m−1 : the limiting steps of cycles are
excluded and the outgoing reactions of glued cycles are included (reattached to the
heads of the limiting steps). To make the next step, we select vertices of A m−1 that
are glued cycles from V m−2, substitute these vertices by vertices of cycles, delete
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the limiting steps, attach outgoing reactions to the heads of the limiting steps, and
for incoming reactions restore their prototypes from V m−2, and so on.

After all, we restore all the glued cycles, and construct an acyclic reaction network on
the set A . This acyclic network approximates relaxation of the initial network. We call
this system the dominant system.

Note that the reduction algorithm does not need precise values of the constants. It is
enough to have an initial ordering of the constants. Then, the auxiliary network is obtained
only from this ordering. However, after a first iteration, and if the initial network contains
cycles, some of the exit constant are renormalized and the new rate constants become
monomials of the old ones. In order to prune again, we need to compare these monomials.
Monomials of well separated constants are generically well separated [56]. However, a
freedom remains on ordering these new monomials, leading to several possible reduced
acyclic digraphs, given an initial digraph with ordering of the constants (Figure 4.1 of the
main text).

2.9.2 Algorithm 2 : reduction of nonlinear networks with separation

This algorithm consists of the following procedures.
I. Identification of QSS species and QE reactions.

There are two methods of identification, trajectory based, and tropicalization based.
Presently we are using the trajectory based method.

Detect slaved species. After generating trajectories c(t) for t ∈ I, for each species
compute the distances δi = supt∈I | log(ci(t))− log(c∗i (t))|. Use k-means clustering to
separate species into two groups, slaved (small values of δ) and slow (large values of
δ) species.

Prune. For each Pi (polynomial rate) corresponding to slaved species, compute the pruned
version P̃i by eliminating all monomials that are dominated by other monomials of
Pi.

Identify QE reactions and QSS species. Identify, in the structure of P̃i the forward
and reverse rates of QE reactions. This step can be performed by recipes presented
in [131]. The slaved species not involved in QE reactions are QSS.

II. Exploiting QSS conditions, pruning intermediate species, pooling reactions

Define subsets and matrices Given the set of QSS (intermediate) species I, one defines
the set RI of reactions acting on them. The terminal species T , are the other species,
different from I, on which act the reactions from RI . Define two stoichiometric
matrices Sf and ST . Sf defines the fast subsystem and has a number of lines equal
to the number of QSS species, and a number of columns equal to the number of
reactions RI . ST contains the stoichiometries of the terminal species for the same
reactions RI . Species I will be pruned, and reactions RI will be pooled.

Compute elementary modes (EMs) Compute elementary modes of nonzero terminal
stoichiometry as minimal solutions of Sfγ = 0, STγ 6= 0, the minimality being
defined with respect to the number of nonzero coefficients. STγ 6= 0 on the output of
elementary modes packages such as METATOOL. If the terminal stoichiometries of
the EMs are dependent, restrict to a subset of independent terminal stoichiometries.

Solve QSS equations Find approximate formal solutions for systems of QSS algebraic
equations. This step is not yet automatic. It will be automatized in subsequent work
by using tropical geometry methods.
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Find rates of EMs To each elementary mode γi, associate a kinetic law giving the rate
of the EM as a fonction of the terminal species concentrations R∗i (cT ). Let R(cT )
be the vector of rates of reactions in RI . The dependence of these rates on cT is
direct, or indirect, via cI that can be now expressed as function of cT . Then, the
EM rates R∗i (cT ) must satisfy STR(cT ) =

∑
R∗i (cT )STγi. This equation has an

unique solution if the vectors STγi are independent (this justifies the independence
condition for the terminal stoichiometries of EMs).

III. Exploiting QE conditions, pruning QE reactions, pooling species

Define subsets and matrices Given the set of QE reactions Q, one defines the set S of
species that are affected by them. The species S are also affected by other reactions
that we call terminal, QT . Define two stoichiometric matrices Sf and ST . Sf defines
the fast subsystem and has a number of lines equal to the cardinal of E, and a
number of columns equal to the cardinal of Q. ST contains the stoichiometries of
the reactions reactions QT for the same species S (it has the same number of lines
as Sf ). Reactions Q will be pruned and species E will be pooled.

Compute species pools Species pools are computed as minimal solutions of bSf = 0,
bST 6= 0 (the second condition stands for looking for conservation laws of the fast
subsystem that are not conserved by the entire network ; the minimality condition
means that we compute elementary modes of the transpose matrix Sf ).

Solve QE equations Same methods as for QSS conditions. Solve the QSS equations
together with the conservation of pools and express the concentrations of the species
E as functions of the pools c∗i =< bi, c >.

Find new rates Re-express (by substitution) the rate of each reaction from QT in terms
of pools c∗i .
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Chapitre 3

Tropical equilibration principle for
chemical kinetics.

3.1 Introduction.

Systems biology develops biochemical dynamic models of various cellular processes
such as signalling, metabolism, gene regulation. These models can reproduce complex
spatial and temporal dynamic behavior observed in molecular biology experiments. In
spite of their complex behavior, currently available dynamical models are relatively small
size abstractions, containing only tens of variables. This modest size results from the lack
of precise information on kinetic parameters of the biochemical reactions on one hand,
and of the limitations of parameter identification methods on the other hand. Further
limitations can result from the combinatorial explosion of interactions among molecules
with multiple modifications and interaction sites [29]. In middle out modeling strategies
small models can be justified by saying that one looks for an optimal level of complexity
that captures the salient features of the phenomenon under study. The ability to choose
the relevant details and to omit the less important ones is part of the art of the modeler.
Beyond modeler’s art, the success of simple models relies on an important property of large
dynamical systems. The dynamics of multiscale, dissipative, large biochemical models, can
be reduced to that of simpler models, that were called dominant subsystems [112, 58, 57].
Simplified, dominant subsystems contain less parameters and are more easy to analyze.
The choice of the dominant subsystem depends on the comparison among the time scales
of the large model. Among the conditions leading to dominance and allowing to generate
reduced models, the most important are quasi-equilibrium (QE) and the quasi-steady
state (QSS) approximations [58]. In nonlinear systems, timescales and together with them
dominant subsystems can change during the dynamics and undergo more or less sharp
transitions. The existence of these transitions suggests that a hybrid, discrete/continous
framework is well adapted for the description of the dynamics of large nonlinear systems
with multiple time scales [27, 102, 103].

The notion of dominance can be exploited to obtain simpler models from larger models
with multiple separated timescales and to assemble these simpler models into hybrid mod-
els. This notion is asymptotic and a natural mathematical framework to capture multiple
asymptotic relations is the tropical geometry. Motivated by applications in mathematical
physics [87], systems of polynomial equations [133], etc., tropical geometry uses a change
of scale to transform nonlinear systems into discontinuous piecewise linear systems. The
tropicalization is a robust property of the system, remaining constant for large domains of
parameter values ; it can reveal qualitative stable features of the system’s dynamics, such
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as various types of attractors. Thus, the use of tropicalization to model large systems in
molecular biology could be a promising solution to the problem of incomplete or imprecise
information on the kinetic parameters.

In this chapter we provide some rigorous mathematical justifications for the idea of
tropicalization.

3.2 General settings

In chemical kinetics, the reagent concentrations satisfy ordinary differential equations :

dxi
dt

= Fi(x), 1 ≤ i ≤ n. (3.2.1)

Rather generally, the rates are rational functions of the concentrations and read

Fi(x) = Pi(x)/Qi(x), (3.2.2)

where Pi(x) =
∑
α∈Ai

ai,αx
α, Qi(x) =

∑
β∈Bi

bi,βx
β, are multivariate polynomials. Here

xα = xα1
1 xα2

2 . . . xαn
n , xβ = xβ1

1 x
β2
2 . . . xβn

n , ai,α, bi,β, are nonzero real numbers, and Ai, Bi
are finite subsets of Nn.

The special case of mass action kinetics is represented by

Fi(x) = P+
i (x)− P−i (x), (3.2.3)

where P+
i (x), P−i (x) are Laurent polynomials with positive coefficients, P±i (x) =

∑
α∈A±i

a±i,αx
α,

a±i,α > 0, A±i are finite subsets of Zn.
In multiscale biochemical systems, the various monomials of the Laurent polynomials

have different orders, and at a given time, there is only one or a few dominating terms.
Therefore, it could make sense to replace Laurent polynomials with positive real coefficients∑
α∈A aαx

α, by max-plus polynomials exp{maxα∈A[log(aα)+ < log(x), α >]}.
This heuristic can be used to associate a piecewise-smooth hybrid model to the system

of rational ODEs (3.2.1), in two different ways.
The first method was proposed in [101] and can be applied to any rational ODE system

defined by (3.2.1),(3.2.2) :

Definition 3.2.1. We call complete tropicalization of the smooth ODE system (3.2.1),(3.2.2)
the following piecewise-smooth system :

dxi
dt

= DomPi(x)/DomQi(x), (3.2.4)

where Dom
(∑

α∈Ai
ai,αx

α
)

= sign(ai,αmax)exp[maxα∈Ai{log(|ai,α|)+ < u, α >}]. u =
(logx1, . . . , logxn), and ai,αmax , αmax ∈ Ai denote the coefficient of the monomial for which
the maximum is attained. In simple words, Dom renders the monomial of largest absolute
value, with its sign.

The second method,proposed in [119], applies to the systems (3.2.1),(3.2.3).

Definition 3.2.2. We call two terms tropicalization of the smooth ODE system (3.2.1),(3.2.3)
the following piecewise-smooth system :

dxi
dt

= DomP+
i (x)−DomP−i (x), (3.2.5)
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The two-terms tropicalization was used in [119] to analyse the dependence of steady
states on the model parameters. The complete tropicalization was used for the study of
the model dynamics and for the model reduction [101].

For both tropicalization methods, for each occurrence of the Dom operator, one can
introduce a tropical manifold, defined as the subset of Rn where the maximum in Dom is
attained by at least two terms. For instance, for n = 2, such tropical manifold is made of
points, segments connecting these points, and half-lines. The tropical manifolds in such an
arrangement decompose the space into sectors, inside which one monomial dominates all
the others in the definition of the reagent rates. The study of this arrangement give hints
on the possible steady states and attractors, as well as on their bifurcations.

3.3 Justification of the tropicalization and some estimates

In the general case, the tropicalization heuristic is difficult to justify by rigorous esti-
mates, however, this is possible in some cases. We state here some results in this direction.
To simplify, let us consider the class of polynomial systems, corresponding to mass action
law chemical kinetics :

dxi
dt

= Pi(x, ε) =
mi∑
j=1

Mij(x, ε), Mij(x, ε) = Pij(ε)xαij (3.3.1)

where αij are multi-indices, and ε is a small parameter. So, the right hand side of (3.3.1)
is a sum of monomials. We suppose that coefficients Pij have different orders in ε :

Pij(ε) = εγij P̄ij , (3.3.2)

where γij 6= γi′j′ for (i, j) 6= (i′, j′).
We also suppose that the cone R> = {x : xi ≥ 0} is invariant under dynamics (3.3.1)

and initial data are positive :
xi(0) > δ > 0.

The terms (3.3.2) can have different signs, the ones with P̄ij > 0 are production terms,
and those with P̄ij < 0 are degradation terms.

From the biochemical point of view, the choice (3.3.2) is justified by the fact that
biochemical processes have many, well separated timescales. Furthermore, we are inter-
ested in biochemical circuits that can function in a stable way. More precisely, we use the
permanency concept, borrowed from ecology (the Lotka -Volterra model, see for instance
[136]).

Definition 3.3.1. The system (3.3.1) is permanent, if there are two constants C− > 0
and C+ > 0, and a function T0, such that

C− < xi(t) < C+, for all t > T0(x(0)) and for every i. (3.3.3)

We assume that C± and T0 are uniform in (do not depend on) ε as ε→ 0.

For permanent systems, we can obtain some results justifying the two procedures of
tropicalization.

Proposition 3.3.2. Assume that system (3.3.1) is permanent. Let x, x̂ be the solutions to
the Cauchy problem for (3.3.1) and (3.2.4) (or (3.2.5)), respectively, with the same initial
data :

x(0) = x̂(0).
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Then the difference y(t) = x(t)− x̂(t) satisfies the estimate

|y(t)| < C1ε
γ exp(bt), γ > 0, (3.3.4)

where the positive constants C1, b are uniform in ε. If the original system (3.3.1) is struc-
turally stable in the domain ΩC−,C+ = {x : C− < |x| < C+}, then the corresponding
tropical systems (3.2.4) and (3.2.5) are also permanent and there is an orbital topological
equivalence x̄ = hε(x) between the trajectories x(t) and x̄(t) of the corresponding Cauchy
problems. The homeomorphism hε is close to the identity as ε→ 0.

The proof of the estimate (3.3.4) follows immediately by the Gronwall lemma. The
second assertion follows directly from the definition of structural stability which means
that orbits of the dynamical system are smoothly deformed under small perturbations.

Permanency property is not easy to check. In the case of systems (3.3.1) we can make
a renormalization

xi = εai x̄i (3.3.5)

and suppose that (3.3.3) holds for x̄i with C±i uniform in ε.
We seek for renormalization exponents ai such that only a few terms dominate all the

others, for each i-th equation (3.3.1) as ε → 0. Let us denote the number of terms with
minimum degree in ε for i-th equation as mi. Naturally, 1 ≤ mi ≤ Mi. After renormal-
ization, we remove all small terms that have smaller orders in ε as ε → 0. We can call
this procedure tropical removing. The system obtained can be named tropically truncated
system.

Let us denote αijl the lth coefficient of the multi-index αij . If all mi = 1 then we have
the following truncated system

dx̄i
dt

= εµiFi(x̄), Fi(x̄) = Pij(i)x̄α
ij(i)

, (3.3.6)

where

µi = γij(i) +
n∑
l=1

α
ij(i)
l al − ai (3.3.7)

and

µi > γij +
n∑
l=1

αijl al − ai for all j 6= j(i). (3.3.8)

If all mi = 2, in order to find possible renormalization exponents ai, it is necessary to
resolve a family of linear programming problem. Each problem is defined by a set of pairs
(j(i), k(i)) such that j(i) 6= k(i). We define µi by

µi = γij(i) +
n∑
l=1

α
ij(i)
l al − ai = γik(i) +

n∑
l=1

α
ik(i)
l al − ai (3.3.9)

and obtain the system of the following inequalities

µi ≥ γij +
n∑
l=1

αijl al − ai for all j 6= j(i), k(i). (3.3.10)

The following straightforward lemma gives a necessary condition of permanency of the
system (3.3.1).
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Lemma 3.3.3. Assume a tropically truncated system is permanent. Then, for each i ∈
{1, . . . , n}, the i-th equation of this system contains at least two terms. The terms should
have different signs for coefficients pij, i.e., one term should be a production one, while
another term should be a degradation term.

Démonstration. Let us suppose that mi = 1 for some i, or mi > 1, but all terms have the
same sign s. Let us consider this equation. Then one has, for s = 1,

dxi
dt

> εµiδi(C−, C+) > 0.

Therefore, xi(t) > δt+ xi(0) and the system cannot be permanent. If s = −1, then

dxi
dt

< −εµ̃iδi(C−, C+) < 0.

Again it is clear that the system cannot be permanent.

We call “tropical equilibration”, the condition in Lemma 3.3.3. This condition means
that permanency is acquired only if at least two terms of different signs have the maximal
order, for each equation of the system (3.3.1). This idea is not new, and can be traced
back to Newton.

The tropical equilibration condition can be used to determine the renormalization
exponents, by the following algorithm.

Step 1. For each i let us choose a pair (j(i), k(i)) such that j, k ∈ {1, . . . ,Mi} and
j < k. The sign of the corresponding terms should be different.

Step 2. We resolve the linear system of algebraic equations

γij(i) − γik(i) = −
n∑
l=1

α
ij(i)
l al +

n∑
l=1

α
ik(i)
l al, (3.3.11)

for al, together with the inequalities (3.3.10).
Notice that although that Step 2 has polynomial complexity, the tropical equilibration

problem has a number of choices that is exponential in the number of variables at Step 1.
Assume that, as a result of this procedure, we obtain the system

dx̄i
dt

= εµi(F+
i (x̄)− F−i (x̄)), F±i = Pij± x̄α

ij
± . (3.3.12)

One can expect that, in a ”generic” case 1, all µi are mutually different, namely

0 = µ1 < µ2 < ... < µn−1 < µn. (3.3.13)

We can now state a sufficient condition for permanency. Let us consider the first equation
(3.3.12) with i = 1 and let us denote y = x̄1, z = (x̄2, ..., x̄n)tr. In this notation, the first
equation becomes

dy

dt
= f(y) = b1(z)yβ1 − b2(z)yβ2 , b1, b2 > 0, βi ∈ R. (3.3.14)

Since µ2 > 0, one has that z(t) is a slow function of time and thus we can suppose that bi
are constants (this step can be rendered rigorous by using the concept of invariant manifold

1. supposing that multi-indices αij are chosen uniformly, by generic we understand almost always except
for cases of vanishing probability, see also [57]
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and methods from [67]). The permanency property can be then checked in an elementary
way. All rest points of (3.3.14) are roots of f . If f > 0, y(t) is an increasing time function
and if f < 0, y(t) is a decreasing time function. A single root y1 of f within (0,+∞) is
given by

y1 =
(
b2
b1

)d
, d = 1

β1 − β2
. (3.3.15)

These properties entail the following result :

Lemma 3.3.4. Equation 3.3.14 has the permanence property if and only if

β1 < β2.

For fixed z, in these cases we have

y(t, z)→ y0, as t→∞.

Démonstration. Consider the function f(y) = b1y
β1 − b2y

β2 . Under the condition β1 < β2,
f is negative for sufficiently large y > 0, and positive for sufficiently small y > 0. Moreover,
f has a single positive root y1 on (0,+∞). Therefore, all the trajectories of dy/dt = f(y)
tends to y∗ as t→∞ and, for any δ > 0, the interval (y1 − δ, y1 + δ is a trapping domain.
This proves the permanency.

Remark. One can easily show that the condition of the Lemma 3.3.4 is weaker than the
condition (2.5.3) for having sliding modes on the tropical manifold (see previous chapter).
This means that for each sliding mode one has a stable equilibrations.

The generic situation described by the conditions (3.3.13) lead to trivial “chain-like”
relaxation towards a point attractor, provided that we have permanency at each step.
More precisely, all the variables have separate timescales and dissipative dynamics. The
fastest variable relaxes first, then the second fastest one, and so forth, the chain of relax-
ations leading to a steady state. This result is the nonlinear analogue of the similar result
mentioned in the previous chapter, that monomolecular networks with total separation
relax as chains and can only have stable point attractors (see also [57]).

The following theorem describes a less trivial situation, when timescales are not totally
separated and limit cycles are possible.

Theorem 3.3.5. Assume 0 = µ1 < µ2 < ... < µn−1 ≤ µn holds. If the procedure,
described above, leads to the permanency property at each step, where i = 1, 2, ..., n −
2, and the last two equations have a globally attracting hyperbolic rest point or globally
attracting hyperbolic limit cycle, then the tropically truncated system is permanent and has
an attractor of the same type. Moreover, for sufficiently small ε the initial system also is
permanent for initial data from some appropriate domain Wε,a,A and has an analogous
attracting hyperbolic rest point (limit cycle) close to the attractor of the truncated system.
If the rest point (cycle) is not globally attracting, then we can say nothing on permanency
but, for sufficiently small ε, the initial system still has an analogous attracting hyperbolic
rest point (limit cycle) close to the attractor of truncated system and the same topological
structure.

Démonstration. i Suppose that the tropically truncated system (TTS) has a globally at-
tracting compact invariant set A . Let Π be an open neighborhood of this set. We can
choose this neighborhood as a box that contains A . Then, for all initial data x(0), the
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corresponding trajectory x(t), x(0) lies in Π for all t > T0(x0, Π). Therefore, our TTS is
permanent. Here we do not use the fact that the cycle (rest point) is hyperbolic.

ii Permanency of the initial system follows from hyperbolicity of A . Hyperbolic sets
are persistent (structurally stable) (Ruelle 1989). Since this set is globally attracting, all
TTS is structurally stable (as a dynamical system). This implies that the initial system
has a hyperbolic attractor close to A , since initial system is a small perturbation of TTC
in Π.

iii If the set A is only locally attracting, the last assertion of Theorem follows from
persistency of hyperbolic sets.

Finally, let us note that tropical equilibrations with permanency imply the existence
of invariant manifolds. This allows to reduce the number of variables of the model while
preserving good accuracy in the description of the dynamics. The following Lemma is
useful in this aspect.

Lemma 3.3.6. Consider the system

dy

dt
= f(y) = b1(z)yβ1 − b2(z)yβ2 , b1, b2 > δ1 > 0, βi ∈ R. (3.3.16)

dz

dt
= λF (y, z), (3.3.17)

where z ∈ Rm, λ > 0 is a parameter and the function F enjoys the following properties.
This function lies in an Hölder class

F ∈ C1+r, r > 0,

and the corresponding norms are uniformly bounded in Ω = (0,+∞)×W , for some open
domain W ⊂ Rm :

|F |C1+r(Ω) < C2.

Assume that the condition of Lemma 3.3.4 holds. We also suppose that bi are smooth
functions of z for all z such that |z| > δ0 > 0. Assume that z ∈W implies |z| > δ0.

Then, for sufficiently small λ < λ0(C2, b1, b2, β1, β2, δ) equations (3.3.16), (3.3.18) have
a locally invariant and locally attracting manifold

y = Y (z, λ), Y ∈ C1+r(W ), (3.3.18)

and Y has the asymptotics

Y (z, λ) = y1(z) + Ỹ , Ỹ ∈ C1+r(W ), (3.3.19)

where
|Ỹ (z, λ)|C1+r(W ) < Csλ

s, s > 0. (3.3.20)

Démonstration. This lemma can be derived from Theorem A of the Appendix to this
section (that is a simplified version of Theorem 9.1.1 from [67], Ch. 9). Let us check
assumptions of Theorem A.

Definition of the operator A(z) and function G. Let y0(z) be the unique stable root of
equation

h(z, y) = b1(z)yβ1 − b2(z)yβ2 = 0.
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The operator A is the multiplication operator

A(z)y = hy(z, y)|y=y0(z)y.

Since we assume that bi are smooth, it is bounded linear operator, thus, it is a sectorial
one. We set

G = h(z, y)−A(z)y.

Definition of the function Q(z) and Q̃. We define

Q = λF (y0(z), z), Q̃ = λ(F −Q).

The point (i). Is obvious since all functions are smooth.
The point (ii). We consider a difference of two solutions of equation

dz

dt
= Q(z).

This gives
µ < Cλ, M1 = 1.

The point (iii). The inequality

||y(t)|| ≤ exp(−βt)||y(0)||

for solution of dy/dt = A(z)y holds for some β > 0 due to stability of the root y0(z).
Moreover, we notice that β does not depend on λ and thus, β > 2µ for sufficiently small
λ.

The point (iv). We take θ = 1. The condition (1 + θ)µ < β holds for sufficiently small
λ (see above).

The point (v). Let us show that constant κ can be estimated as κ < Cλ. Let us consider
a time interval (0, c log(λ)). Within this interval, the solution y of 3.3.16 with z = z(0)
enters a O(λ) - neighborhood of the point y0(z0).

For t > c log(λ), let us make substitution y = y0(z) + ỹ, where ỹ is a new unknown.
Then the equation for y takes the following form :

dỹ

dt
= A(z)ỹ + g(ỹ)− λy′0(z)F (y, z).

where |g| < ỹ2. This equation implies that

|ỹ| < c1λ

for all t > c log(λ). From the last estimate we conclude that κ can be chosen as O(λ).
Therefore, all conditions of Theorem A hold and an invariant C1+r smooth manifold

exists.
Eq.(3.3.20) results directly from Theorem 9.1.1 from [67], Ch. 9.
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3.4 Geometry of tropical equilibrations

In this section we provide a geometrical interpretation of tropical equilibrations. We
consider networks of biochemical reactions with mass action kinetic laws. This framework
has already been introduced in the previous chapter. To simplify notations with respect
to (2.2.1), (2.2.2), we consider only one index j per reaction. The reaction rate reads

Rj(x) = kjx
αj . (3.4.1)

In this notation, reversible reactions will count for two reactions, one for each direction.
The network dynamics is described as follows

dx

dt
=
∑
j

kj(βj −αj)xαj . (3.4.2)

where βj ,αj ∈ Zn+ are stoichiometric vectors (defining the type and numbers of
molecules produced and consumed by reaction j, respectively).

After parameters and variables rescaling, kj = k̄jε
γj , x = x̄εa we obtain

dx̄

dt
= (
∑
j

εµjkj(βj −αj)x̄αj )ε−a, (3.4.3)

where (ε−a)i = ε−ai , and
µj = γj+ < a,αj > . (3.4.4)

Definition 3.4.1. Two reactions j, j′ are equilibrated on the species i iff :
i) µj = µj′,
ii) (βj −αj)i(βj′ −αj′)i < 0,
iii) µk < µj for any reaction k 6= j, j′, such that (βk −αk)i 6= 0.

Remark. According to (3.4.4) and Definition 3.4.1, the equilibrations correspond to
vectors a ∈ Rn where maxj(γj+ < a,αj >) is attained at least twice.

Let us consider the equality µj = µj′ . This represents the equation of a n−1 dimensional
hyperplane of Rn, orthogonal to the vector αj −αj′ :

γj+ < a,αj >= γj′+ < a,αj′ > (3.4.5)

For each species i, we consider the set of reactions Ri that act on this species, namely
k ∈ Ri iff (βk −αk)i 6= 0. The finite set Ri can be characterized by the corresponding set
of αk that are vectors with positive integer coefficients in Rn.

The piecewise affine function fi(a) = maxj(γj+ < a,αj >) defined from Rn to R
represents the Legendre transformation of the function νi(αj) = −γj defined from Ri to
R.

The set of points of Rn where at least two reactions equilibrate on the species i corre-
sponds to the places where fi is not locally affine (the maximum in the definition of fi is
attained at least twice).

For each species, we also define the Newton polytope Ni, that is the convex hull of the
vectors αk, k ∈ Ri. The hyperplanes defined by (3.4.5) and corresponding to equilibrations
of two reactions on the same species i are orthogonal to edges of the Newton polytope
Ni. Ni is also the Newton polytope of the polynomial Pi(x) =

∑
j kj(βji − αji)xαj that

defines the rhs of the ordinary differential equation satisfied by the species i.
We can now state the following
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Proposition 3.4.2. There is a bijection between the locus Ti of vectors a where the
tropical polynomial fi(a) is not linear and the tropical manifold of the polynomial Pi(x) that
defines the rhs of the ordinary differential equation satisfied by the species i. The reaction
equilibrations correspond to vectors a included in Ti but satisfying also the condition ii)
of Definition 3.4.1.

Remarks. This property can be used to put into correspondence reaction equilibrations
and slow invariant manifolds. Indeed, if a reaction equilibration exists, this leads to a
slow manifold that (on logarithmic paper) is close to some parts of the tropical manifold
of Pi(x). For instance, a reaction equilibration described by (3.4.5) will correspond to
an invariant manifold close to a hyperplane orthogonal to αj − αj′ . The condition ii) of
Definition 3.4.1 is needed for equilibrium (the equilibrated reactions have to have opposite
effects on the species i, one has to produce and the other has to consume the species).
Without this condition, the dynamics would simply cross the tropical manifold with no
deviation. However, the condition ii) is not sufficient for stability of the equilibration. A
sufficient stability condition is the one given by Lemma 3.3.4 or the sliding mode condition
(2.5.3) introduced in the previous chapter.

3.5 Tropical approach to the permanency problem

We have shown in the previous sections that tropical ideas can be used to simplify
complex systems, by tropical removing. During this procedure, permanency has to be
checked at intermediate steps on tropically truncated systems. Lemma 3.3.4 allows to
check permanency for toric systems with separation. We provide here a more general
approach to permanency. We consider only upper estimates. The lower estimates can be
found in a similar way.

For permanent systems we obtain some rigorous results for the two procedures of
tropicalization. The complete tropicalization of the system (3.3.1) reads

dx̄i
dt

= DomR(Fi(x̄)), (3.5.1)

where DomR(Fi) = Fik(i)(x, ε), |Fik(i)(x, ε)| > |Fij(x, ε)|, j 6= ki is the dominant term.
Let us first formulate a Lemma.

Lemma 3.5.1. Assume that non-tropicalized system (3.3.1) has a smooth Lyapunov func-
tion V (x) defined on the cone Rn

> such that

dV (x(t))/dt ≤ 0 (3.5.2)

on trajectories x(t) = (x1(t), ...xn(t)) of (3.3.1) and

V (x)→∞ as |x| → ∞. (3.5.3)

Then, if x ∈ Π there is a constant C0(C, δ′) such that

|x(t)| < C0, t > 0. (3.5.4)

Démonstration. Indeed, if |x(t)| are unbounded as t→ +∞, one has supt>0 V (x(t)) = +∞,
but (3.5.2) entails V (x(t)) ≤ V (x(0)).
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Let us consider the tropical version (3.5.1) of (3.3.1). Assume that the tropicalization
has a ”strong” Lyapunov function V tr(x). For a vector field F this function satisfies

dV tr(x(t))/dt ≤ −κ|∇V tr(x(t))||F (x(t))|, κ > 0 (3.5.5)

on trajectories x(t) = (x1(t), ...xn(t)) of (3.3.1) and

V tr(x)→∞ as |x| → ∞. (3.5.6)

Here x ∈ Rn
>.

Such a function can be found for some tropical versions of two component systems.
For example, if

dx/dt = k1x
ayb, (3.5.7)

dy/dt = −k2x
ayb, (3.5.8)

where a, b > 0 and k1, k2 > 0, we can define V tr by

V = x+ βy, (3.5.9)

where βk2 > k1. Then ∇V = (1, β), and (3.5.5), (3.5.6) hold.

Lemma 3.5.2. Assume tropicalized system (3.5.1) has a smooth Lyapunov function
V tr(x) defined on the cone Rn

> such that (3.5.5), (3.5.6) hold.
Then, if x ∈ Π there is a constant C0(C, δ′) such that solutions of non-tropicalized

system (3.3.1)
|x(t)| < C0, t > 0. (3.5.10)

Démonstration. Let us compute the derivative dV tr/dt on trajectories of the initial (non-
tropicalized) system. We have the relation

dV tr(x(t))/dt = ∇V tr(x(t)) · F tr(x(t)) +∇V tr(x(t)) · F̃ (x(t)), (3.5.11)

where F̃ = F − F tr, and F tr denotes the tropical part of the vector field F , F̃ contains,
thus, all the rest terms.

Using the definition of strong Lyapunov functions, from (3.5.11) one has

dV tr(x(t))/dt ≤ |∇V tr(x(t))|(−κ|F tr(x(t))|+ |F̃ (x(t))|). (3.5.12)

But for large |x| one has |F̃ (x)| < κ. Therefore, (3.5.12) gives then

dV tr(x(t))/dt ≤ 0. (3.5.13)

This shows that |x(t)| cannot increase to +∞, and finishes the proof.

3.6 Appendix : Theorems on invariant manifolds

Let us formulate two theorems on invariant manifold existence. The first theorem A,
is a particular case of Theorem 9.1.1 from [67] that is sufficient for our goals (it applies
to the time autonomous case, and considers that the slow dynamics is finite dimensional).
The second one is a simplified, time autonomous variant of Theorem 6.1.7 [67].

Let us consider the system

zt = Q(z) + Q̃(z, y), (3.6.1)
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yt = A(z)y +G(z, y), (3.6.2)

where z = (z1, ..., zn) lies in Rn and y lies in a Banach space B. Assume the sectorial
operator A has the form

A(z) = A0 + Ã(z).

In the system (3.6.1), (3.6.2) the variable z is a slow one whereas y is a fast variable.
Theorem A. Let B be a Banach space and A0 be a sectorial operator in B, z ∈ Rn.

Assume A(z) is an operator such that

A(z)−A0 = Ã : Rn → L (Bα, B) (3.6.3)

is bounded differentiable with respect to z map, U is a neighborhood of 0 in Bα and

G,Q, Q̃ : Rn × U → B ×Rn ×Rn (3.6.4)

are bounded and differentiable with respect to y, z maps, Q depends only on z.
Moreover, let us assume that the following conditions are satisfied :
i The maps Ã, G,Q, Q̃ are C1 differentiable with respect to z and y ;
ii There are constants M1, µ > 0 such that

|z1(t)− z2(t)| ≤M1 exp(µ|t|)|z1(0)− z2(0)| (3.6.5)

if z1, z2 satisfy the non-perturbed equation zt = Q(z) ;
iii For the operator A we have a trivial exponential dichotomy, i.e., if

yt = A(z(t))y

then
||y(t)|| ≤M exp(−βt)||y(0)||, β > µ, (3.6.6)

if z satisfies the non-perturbed equation zt = Q(z) ;
iv the maps Q̃, Q̃z, Q̃y, Qz, Ã and Az are uniformly bounded in the corresponding norms

by the number M0 and there is a number θ ∈ (0, 1]) such that

µ(1 + θ) < β

and the map (y, z) → Gy, Gz, Q̃y, Q̃z, Qz, Az lies in the Holder class with the exponent θ
and the constant M2 ;

v for some κ one has the estimate

||G(z, 0)|| < κ, ||Gz(z, 0)|| < κ, ||Q̃|| < κ. (3.6.7)

Then for sufficiently small positive κ and r0 that depend only on β,A0, µ, θ, β−µ(1+θ)
and Mi there exists an invariant manifold

y = Y (z), Y ∈ C1

which is a maximal invariant subset of the set

||y||α < r0

and such that
||Y ||, ||Yz|| → 0 as κ→ 0. (3.6.8)
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Theorem B. Let us consider (3.6.1), (3.6.2) where A(z) = A does not depend on z.
Assume that for some β > 0

||exp(At)v|| ≤M ||v|| exp(−βt), ||exp(At)v||α ≤M ||v||t−α exp(−βt), t > 0. (3.6.9)

Let us denote Q̄(z, y) = Q + Q̃. Assume (3.6.4) holds, Q,G ∈ C1+r, r ∈ (0, 1) and in
Y = Rn × U

sup ||G|| < CG, ||G(z1, y1)−G(z2, y2)|| ≤ λ(||z1 − z2||+ ||y1 − y2||). (3.6.10)

Let us denote
µ = sup

(z,y)∈Y
||DzQ̄||, M2 = sup

(z,y)∈Y
||Dy||. (3.6.11)

Let us denote

Θ1(∆) = λM

∫ ∞
0

u−α exp(−(β − µ1)u)du, µ1 = µ+∆M2.

Suppose that for some ∆ and R0 the following conditions and inequalities holds

{v : ||v||α < R0} ⊂ U, MCG

∫ ∞
0

u−α exp(−βu)du < R0, (3.6.12)

β/2 > µ1, Θ1 < ∆/(1 +∆), (3.6.13)

and
Θ1 max{1, (1 +∆)M2

µ1
} < 1. (3.6.14)

Then there is an invariant manifold

y = Y (z), z ∈ Rn (3.6.15)

such that
||Y (z)|| < R0, ||Y (z1)− Y (z2)|| ≤ ∆|z1 − z2|. (3.6.16)
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Chapitre 4

Two paradigmatic cell cycle
models and their tropicalization

4.1 Description of the models

The two paradigmatic cell cycle models date both from the early 90’.
The first one (Model 1) is the cell cycle model proposed by Tyson [140]. This model

mimics the interplay between cyclin and cyclin dependent kinase cdc2 (forming the matu-
ration promoting factor MPF complex) during the progression of the cell cycle. The model
demonstrates that this biochemical system can function as an oscillator, or converge to a
steady state with large MPF concentration, or behave as an excitable switch. The three
regimes can be associated to early embryos rapid division, metaphase arrest of unfertil-
ized eggs, and growth controlled division of somatic cells, respectively. This model takes
into account autocatalytic activity of MPF (positive feed-back). It can be described as a
nonlinear cycle of biochemical reactions and corresponds to the following set of differential
equations :

y′1 = ε−3k9y2 − ε−6k8y1 + k6y3, y′2 = ε−6k8y1 − ε−3k9y2 − ε−2k3y2y5,

y′3 = ε2k′4y4 + ε−2k4y4y
2
3 − k6y3, y′4 = −ε2k′4y4 − ε−2k4y4y

2
3 + ε−2k3y2y5,

y′5 = ε2k1 − ε−2k3y2y5, (4.1.1)

Here ki > 0 are rate constants, yi, i ∈ [1, 5] are concentrations of cdc2, p-cdc2 (phospho-
rylated kinase), cyclin-p :cdc2 complex (active MPF), cyclin-p :cdc2-p complex (inactive
MPF), and cyclin, respectively. With respect to the original model we have introduced
a small parameter ε > 0 to cope with the order of the rate constants. The values of the
constants in the original models are given in the Table 4.1. The renormalized constants ki
are all of order one.

The system (4.1.1) has the conservation law

y1(t) + y2(t) + y3(t) + y4(t) = 1, (4.1.2)

where the value 1 (total initial concentration of kinase cdc2) was chosen by convenience.
The second model (Model 2),proposed by Goldbeter [48], also mimics a minimal mitotic

oscillator. This oscillator is based on a cascade of post-transcriptional modification that
modulates the activity of the kinase cdc2. As cyclin progressively increases, it activates
the MPF complex, that triggers cyclin degradation and mitosis. The cyclin degradation is

77
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Constant Value γi Renormalized value
k1 0.015 2 1.5
k3 200 -2 2
k4 180 -2 1.8
k′4 0.018 2 1.8
k6 1 0 1
k8 1000000 -6 1
k9 1000 -3 1

Table 4.1 – Parameters of the cell cyle model 1, from [140]. These were renormalized
by powers of a small positive parameter εγi (here ε = 0.1). The powers γi where chosen
such that all renormalized parameters are of order one. The units of time are minutes, and
concentration units are arbitrary.

not triggered directly by MPF, but by an third variable (a cyclin protease), activated by
MPF.

In the original model the substrate dependence of post-transcriptional modifications
are described by Michaelis-Menten kinetics. Furthermore, to cope with situations when one
has large amounts of enzyme, the author represented the dependence of the Vmax parameter
on the enzyme concentration by a second Michaelis-Menten function. The original model
is described by the following equations :

C ′ = νi − νdX
C

Kd + C
− kdC, (4.1.3)

M ′ = VM1
C

Kc + C

1−M
K1 + 1−M − V2

M

K2 +M
, (4.1.4)

X ′ = VM3M
1−X

K3 + (1−X) − V4
X

K4 +X
. (4.1.5)

Here, the variable C represents the cyclin, M the active MPF complex, and X is the
active cyclin protease.

Using numerical simulations with the parameters proposed in the original paper we
realized that several enzymatic processes such as the degradation of cyclin, the activation
of MPF, and the activation of the protease works at substrate saturation. Therefore,
we have approximated the corresponding Michaelis-Menten functions by constants, and
obtained the following, simpler, equations (Model 2) :

y′1 = k1ε− k2ε
3y3 − k3ε

2y1, (4.1.6)

y′2 = k4ε
−3 y1

1 + y1
− k5ε

−3 y2
1 + y2

, (4.1.7)

y′3 = k6y2 − ε−2k7
y3

1 + y3
. (4.1.8)

The renormalized variables are defined as y1 = C/Kc, y2 = M/K2, and y3 = X/K4.
Like in the case of Tyson’s model (model 1) we have introduced a small parameter ε > 0
to cope with the order of the rate constants. The values of the constants in the original
models are given in the Table 4.2. The renormalized constants ki are all of order one.
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Constant Value γi Renormalized value
k1 0.05 1 0.5
k2 0.0025 3 2.5
k3 0.001 2 1
k4 600 -3 0.6
k5 300 -2 3
k6 1 0 1
k7 100 -2 1

Table 4.2 – Parameters of the cell cyle model 2, adapted from [48]. These were renormal-
ized by by powers of a small positive parameter εγi (here ε = 0.1). The powers γi where
chosen such that all renormalized parameters are of order one. Rescaled concentrations
are dimensionless and time units are minutes.

4.2 Tropical equilibrations and model reduction of model 1

Let us apply the tropical equilibration principle. To this aim, we renormalize the vari-
ables,

yi = εai ȳi. (4.2.1)

Let us substitute these relations into the system of equations. As a result, we obtain

ȳ′1 = ε−3+a2−a1k9ȳ2 − ε−6k8ȳ1 + k6ε
a3−a1 ȳ3, ȳ′2 = ε−6+a1−a2k8ȳ1 − ε−3k9ȳ2 − ε−2+a5k3ȳ2ȳ5,

ȳ′3 = ε2+a4−a3k′4ȳ4 + ε−2+a3+a4k4ȳ4ȳ
2
3 − k6ȳ3, ȳ′4 = −ε2k′4ȳ4 − ε−2+2a3k4ȳ4ȳ

2
3 + ε−2+a2+a5−a4k3ȳ2ȳ5,

ȳ′5 = ε2−a5k1 − ε−2+a2k3ȳ2ȳ5. (4.2.2)

The system (4.2.2) has the conservation law

εa1 ȳ1(t) + εa2 ȳ2(t) + εa3 ȳ3(t) + εa4 ȳ4(t) = 1. (4.2.3)

In order to compute the exponents ai we use tropical equilibrations together with the
conservation law (4.2.3). There are 24 variants of tropical equilibrations. To our surprise,
we found that there is only one solution for the exponents values. We can show that
all possible equilibrations of the variables y3, y4 and y5 uniquely set the values of two
exponents, a3 = 2, a4 = 0.

Let us consider the variants with respect to the equilibrations of the variables y1 and
y2. Denoting by Ti the ith term in the equation, we have the following situations :

1) In eq. for ȳ1 : T1 = T2, T3 <= T1, In eq. for ȳ2 : T1 = T2, T3 <= T1.
2) In eq. for ȳ1 : T1 = T2, T3 <= T1, In eq. for ȳ2 : T1 = T3, T2 <= T3.
3) In eq. for ȳ1 : T2 = T3, T1 <= T2, In eq. for ȳ2 : T1 = T2, T3 <= T1.
4) In eq. for ȳ1 : T2 = T3, T1 <= T2, In eq. for ȳ2 : T1 = T3, T2 <= T1.
In the variant 1 (Case I) the tropical equilibrations do not fix the values of the exponent

a5 and we get

a1 = 7− a5, a2 = 4− a5, a3 = 2, a4 = 0, a5 ≥ −1. (4.2.4)

In the variants 2,3,4 (Case II) the exponents are uniquely determined from equilibrations
and we obtain

a1 = 8, a2 = 5, a3 = 2, a4 = 0, a5 = −1. (4.2.5)
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However, (4.2.5) and the conservation law (4.2.3) are incompatible. Indeed, (4.2.5) implies
that ȳ4(t) = O(1) for all t, while ȳi → 0, 1 ≤ i ≤ 3, when ε → 0. The conservation
law (4.2.3) can be satisfied only if ȳ4(t) = 1, for all t, that is a non-generic situation.
Therefore, the case II can be rejected. In the case I the conservation law takes the form
ε7−a5 ȳ1(t) + ε4−a5 ȳ2(t) + ȳ4(t) = 1 + o(1), as ε → 0. Assuming that ȳ2(0) = O(1) and
ȳ4 6= 1 (it is reasonable, since it is a generic case), we obtain a5 = 4. Thus, the only
possible situation is variant 1 (Case I) and the corresponding set of exponents is :

a1 = 3, a2 = 0, a3 = 2, a4 = 0, a5 = 4. (4.2.6)

Let us note that the terms T1 and T2 in the equations for the variables y1, y2 correspond
to direct and reverse rates of a phosphorylation/dephosphorylation cycle transforming y1
into y2 and back. Thus, biochemically, (Case I) corresponds to the quasi-equilibrium of
this cycle. Furthermore, the equilibration of all the variables leads to the exponents (4.2.6).
In this case, 2 + a4 − a3 = −2 + a3 + a4 = 0, 2 = −2 + 2a3 = −2 + a2 + a5 − a4, meaning
that the tropical equilibrations of the variables y3, y4 are triple (in each equation, all three
terms have the same order).

We finally obtain the following renormalized system

ȳ′1 = ε−6(k9ȳ2 − k8ȳ1) + k6ε
−1ȳ3, ȳ′2 = ε−3(k8ȳ1 − k9ȳ2)− ε2k3ȳ2ȳ5,

ȳ′3 = k′4ȳ4 + k4ȳ4ȳ
2
3 − k6ȳ3, ȳ′4 = ε2(−k′4ȳ4 − k4ȳ4ȳ

2
3 + k3ȳ2ȳ5),

ȳ′5 = ε−2(k1 − k3ȳ2ȳ5). (4.2.7)

The structure of the system (4.2.7) emphasizes the multiple time scales of the model. The
timescales of the variables are given by the dominating orders in the right hand sides of the
corresponding differential equations. Thus, the fastest variables are in order y1 (timescale
ε6), then y2 and y5 (timescales ε3 and ε2, respectively). The variables y3 and y4 are slower
(timescales 1 and ε−2 respectively).

Assume that
ȳ2 > δ > 0, (4.2.8)

This important assumption, or another variant of this, is necessary for existence of an
invariant manifold and will be justified, a posteriori. Let us explain why this condition
is important. In fact, consider the last equation for ȳ5 in (4.2.7). We can apply Theorem
A (Appendix of the previous chapter) to this equation. The important condition of this
Theorem is an exponential estimate for the linear operator in the equation for the fast
variable.. The exponent β in this estimate depends on the minimum of y2. The β should
be more than a small parameter κ, which is proportional to ε2.

Remark. A weaker but yet sufficient condition (see Theorem A from Appendix) :∫ t

0
ȳ2(s)ds > δt+ C0 > 0. (4.2.9)

To obtain an invariant manifold, we use Theorem A from Appendix (one can apply as
well Theorem 6.1.7 from [67]). To this end, first we make a time rescaling in (4.2.7) by
τ = ε6t. We then obtain

dȳ1
dτ

= k9ȳ2 − k8ȳ1 + k6ε
5ȳ3,

dȳ2
dτ

= ε3(k8ȳ1 − k9ȳ2)− ε8k3ȳ2ȳ5,

ȳ3
dτ

= ε6(k′4ȳ4 + k4ȳ4ȳ
2
3 − k6ȳ3), ȳ4

dτ
= ε8(−k′4ȳ4 − k4ȳ4ȳ

2
3 + k3ȳ2ȳ5),

ȳ5
dτ

= ε4(k1 − k3ȳ2ȳ5). (4.2.10)
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We see that this system contains a fast variable ȳ1 and all the rest variables are slow. It is
easy to check conditions of Theorem A from Appendix (or Theorem B, or 6.1.7 from [67]).

It is clear that the first approximation to the corresponding invariant manifold is

ȳ1 ≈ Y1, Y1 = (k9ȳ2 + k6ε
5ȳ3)k−1

8 .

Let us describe a standard procedure that allows to obtain corrections to this relation. We
present ȳ1 as

ȳ1 = Y1 + ỹ1,

where ỹ1 is a new unknown. For ỹ1 one obtains

dỹ1
dτ

= −k8ỹ1 − (Y1)′τ .

This implies that a good approximation for ỹ1 is

ỹ1 = −k−1
8 (Y1)′τ .

Let us compute (Y1)′τ . One has

dY1
dτ

= (k9(ȳ2)′τ + k6ε
5(ȳ3)′τ )k−1

8 .

To estimate the order of this expression, let us calculate (ȳ2)′τ by substituting the expression
for ȳ1 in the equation for ȳ2. We obtain that

dȳ2
dτ

= ε8k6ȳ3 + ε3k6ỹ1 − ε7k3ȳ2ȳ5. (4.2.11)

Using these relations one can show that

ỹ1 = O(ε7), dȳ2
dτ

= O(ε7). (4.2.12)

(under condition that all ȳi are bounded as ε→ 0).
Using the invariant manifold obtained one can exclude ȳ1 from system (4.2.10). Let us

consider the new system. We see that ȳ5 is a fast variable and all the rest variables can be
considered as slow.

We repeat now the same procedure for ȳ5. Then, from the last equation (4.2.10) and
Lemma 3.3.6 we obtain the relation

ȳ2ȳ5 = k1/k3 +O(ε2), (4.2.13)

which represents an equation of an invariant manifold.
In turn, the relation (4.2.13) leads to the following equations for ȳ3, ȳ4

ȳ′3 = k′4ȳ4 + k4ȳ4ȳ
2
3 − k6ȳ3 +O(ε2), ȳ′4 = ε2(−k′4ȳ4 − k4ȳ4ȳ

2
3 + k1 +O(ε2)).(4.2.14)

The invariant manifold equation is defined, therefore, by the equation

ȳ1 = k−1
8 (k9ȳ2 + k6ε

5ȳ3) +O(ε7). (4.2.15)

Remind that ȳ3, ȳ4 are slow variables. Then, using (4.2.13),(4.2.15), we obtain, for ȳ2,

(ȳ2)′t = ε2(k6ȳ3 − k1) +O(ε7). (4.2.16)
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This estimate for the correction can be obtained as above in the case of ȳ1. We omit this
straightforward calculation.

System (4.2.14) represents a two-dimensional reduced model of the initial five-dimensional
system. This result shows that tropical equilibrations can be used for model reduction.

The solutions of (4.2.14) either tend to the stable equilibrium

ȳ4 = k1
k′4 + k4(k1/k6)2 , ȳ3 = k1/k6, (4.2.17)

or, if this equilibrium is unstable, to a limit cycle.
Based on the general Theorem 3.3.5 we can assert the following :

Theorem 4.2.1. Assume (4.2.8) holds with δ > 0. If the shorted system (4.2.14) has a
stable hyperbolic limit cycle, then, under above the conditions, for sufficiently small ε the
five component system (4.1.1) also has a stable limit cycle. If the shorted system (4.2.14)
has a stable hyperbolic equilibrium, then, under above the conditions, for sufficiently small
ε the five component system (4.1.1) also has a stable hyperbolic equilibrium.

We have studied the system (4.2.14) analytically and numerically. The numerical sim-
ulations confirm the criteria of cycle existence both for small ε and for ε = O(1). For
small epsilon the cycle has a singular structure. The amplitude of ȳ3 and the cycle period
increase in ε, approximatively, as ε−2 (the assertion about period is natural since the rate
of ȳ4 is O(ε2)).

Hyperbolicity can be straightforwardly checked for the rest point (4.2.17), by comput-
ing the eigenvalues of the linearized system. Denote by Y = (ȳ3, ȳ4). When the rest point
Y 0 = (ȳ0

3, ȳ
0
4) is hyperbolic and stable we have the following estimate

|Y (t)− Y 0| < C1 exp(−c1ε
2t) (4.2.18)

with some C1, c1 > 0 holds. Integrating (4.2.16) for ȳ2 over interval [0, τ ] gives

|ȳ2(τ)− ȳ2(0)| < ε2C1c
−1
1 = o(1) (4.2.19)

uniformly in τ > 0 as ε → 0. This yields that ȳ2(t) > δ if ȳ2(0) > 2δ and therefore, ȳ2(t)
does not go to zero for large t, justifying the estimate (4.2.8) needed for the existence of
an invariant manifold. The case of a limit cycle is discussed in the next subsection.

4.3 A priori estimates and permanency for the two compo-
nent version of the cell cycle model 1

In the previous section we showed how to reduce the five component model to a two
component model. According to the general Theorem 3.3.5, one can use the properties of
the attractors of the two component models to draw conclusions on the properties of the
five components model. This section develops this strategy.

The two component shorted system can be written as follows :

dx

dt
= k′4y + k4yx

2 − k6x, (4.3.1)

dy

dt
= −k′4y − k4yx

2 + k1. (4.3.2)
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We consider these equations in the cone R2
> and assume that

x(0) > 0, y(0) > 0.

Next, we obtain some simple estimates.

Lemma 4.3.1. Let A = k1/k
′
4. If y(0) ∈ (0, A), one has

0 < y(t) ≤ A, t > 0. (4.3.3)

Démonstration. Clearly, y > 0. In fact, if it does not hold, there is a point t0 such that
dy/dt(t0) ≤ 0 and y(t0) = 0. This gives a contradiction with (4.3.2).

Similarly, we can prove that y ≤ A. In fact, if it does not hold, there is a point t0 such
that dy/dt(t0) ≥ 0 and y(t0) = A. This gives a contradiction with (4.3.2).

Lemma 4.3.2.

0 ≤ x(t). (4.3.4)

Démonstration. If (4.3.4) does not hold, there is a point t0 such that dx/dt(t0) ≤ 0 and
x(t0) = 0. This gives a contradiction with (4.3.1).

Lemma 4.3.3.

x(t) + y(t) ≤ B = (k1 + k6A)/k6. (4.3.5)

Démonstration. For v = x+ y one obtains

dv

dt
= −k6x+ k1 = −k6v + k1 + k6y ≤ −k6v +Bk6.

Therefore, as above, one obtains (4.3.5). Notice that then x(t) ≤ B.

Lemma 4.3.4. For some δ1 > 0 condition y(0) > δ1 implies

y(t) > δ1 > 0, t > 0. (4.3.6)

Démonstration. We have the inequality

dy

dt
≥ −k′4y − k4yB

2 + k1. (4.3.7)

Let δ1 satisfy

0 < δ1 <
k1

k′4 + k4B2 .

If (4.3.5) does not hold, there is a point t1 such that dy/dt ≤ 0 and y(t) = δ1 at t = t1.
Then (4.3.7) leads to a contradiction.

Lemma 4.3.5. For some δ2 > 0 condition x(0) > δ1 implies

x(t) > δ2 > 0, t > 0. (4.3.8)
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Démonstration. We have the inequality

dx

dt
≥ k′4δ1 − k6x. (4.3.9)

Let δ2 satisfy

0 < δ2 <
k′4δ1
k6

.

If (4.3.5) does not hold, there is a point t1 such that dx/dt ≤ 0 and x(t) = δ2 at t = t1.
Then (4.3.9) leads to a contradiction.

We can provide now a qualitative description of the dynamics of the two component
system.

Due to permanency, and the estimates, obtained above, the two component system
has a globally attractive domain. According to Poincaré-Bendixon theory, this domains
contains stable equilibria and/or limit cycles.

It is clear that the system (4.3.1),(4.3.2) has a unique equilibrium defined by

y3 = k1/k6, y4 = k1(k′4 + k4(k1/k6)2.

We can check the stability of this equilibrium in an elementary way by computing the
Jacobian matrix. As a result, we obtain the the corresponding eigenvalues are given by
the relation

λ± = 1
2(−b+ k6 − a)±

√
(−b+ k6 − a)2 − 4k6b, (4.3.10)

where
b = k′4 + k4(k1/k6)2, a = 2k4(k1/k6)k1(k′4 + k4(k1/k6)2).

We have a stable equilibrium, if

θ = −b+ k6 − a < 0.

For θ > 0 the equilibrium is a repeller, therefore, at least one limit cycle exists. Numer-
ical simulations show that this cycle is unique. The bifurcation at θ = 0 is a supercritical
Andronov-Hopf bifurcation. Actually, this is somehow the simplest two component chem-
ical system with a Hopf bifurcation. As shown by [62], a two-component mass action
law chemical system can not have limit cycle oscillations if it has only monomolecular
or bimolecular reactions (i.e. monomial rates of degree of most two). The two-component
model (4.3.1),(4.3.2) contains an autocatalytic reaction of rate x2y, all other reactions be-
ing monomolecular. The same model has been used by Selkov to model the self-sustained
oscillations of glycolysis [132]. Some other minimal chemical oscillators are discussed in
[146].

4.4 Singular limit cycle and hybrid dynamics of model 1

Up to this point, the tropical ideas were used for reducing the dynamics of the model.
In this section we show that the tropicalization heuristic is well adapted for decomposing
the limit cycle into slow and fast modes, providing a hybrid description of the dynamics.

Let us note that in a hybrid, excitable system, it is possible that not all variables
are equilibrated. Also, the system can have more than two different equilibrations and
associated invariant manifolds, and jump from one invariant manifold to another during
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the dynamics. Let us consider that the variables y1, y2, y5 are equilibrated as above, but
now, only one among the variables y3 or y4 are equilibrated. We have four situations :

1) In eq. for ȳ3 : T1 = T3, T2 <= T1, 2) In eq. for ȳ3 : T2 = T3, T1 <= T2,
3) In eq. for ȳ4 : T1 = T3, T2 <= T1, 4) In eq. for ȳ4 : T2 = T3, T1 <= T2.
Combined with the conservation law condition (4.2.3), variant 1 leads to the same

triple tropical equilibration as before (Case I) and exponents (4.2.6). We denote the cor-
responding invariant manifold M1. The renormalized equations are the same as (4.2.14).

Variant 2 can be rejected by the general permanency criterion given by Lemma 3.3.4.
Indeed, in this case, the degree of the variable ȳ3 in the dominating positive term of the
equation for ȳ3 is greater than the degree of the same variable in the negative dominating
term of this equation, generating non-permanency.

Variant 4 has two solutions satisfying the permanency criterion and compatible with
the conservation law. One of the solutions is the Case I, when all variables are equilibrated.
The second solution corresponds to a new (Case III) set of tropical orders :

a1 = 3, a2 = 0, a3 = 0, a4 = 4, a5 = 4. (4.4.1)

This corresponds to a double equilibration (two equal terms) of the variable y4, the vari-
able y3 being not equilibrated. We denote the corresponding invariant manifold M2. The
renormalized equations read

ȳ′1 = ε−6(k9ȳ2 − k8ȳ1) + k6ε
−3ȳ3, ȳ′2 = ε−3(k8ȳ1 − k9ȳ2)− ε2k3ȳ2ȳ5,

ȳ′3 = ε6k′4ȳ4 + ε2k4ȳ4ȳ
2
3 − k6ȳ3, ȳ′4 = −ε2k′4ȳ4 + ε−2(−k4ȳ4ȳ

2
3 + k3ȳ2ȳ5),

ȳ′5 = ε−2(k1 − k3ȳ2ȳ5). (4.4.2)

Variant 3 leads to a solution (Case IV) where a3 is undetermined, namely :

a1 = 3, a2 = a4 = 0, a5 = 4, a3 ≥ 2. (4.4.3)

The corresponding renormalized equations read

ȳ′1 = ε−6(k9ȳ2 − k8ȳ1) + k6ε
−3+a3 ȳ3, ȳ′2 = ε−3(k8ȳ1 − k9ȳ2)− ε2k3ȳ2ȳ5,

ȳ′3 = ε2−a3k′4ȳ4 + ε−2+a3k4ȳ4ȳ
2
3 − k6ȳ3, ȳ′4 = ε2(k3ȳ2ȳ5 − k′4ȳ4)− ε−2+2a3k4ȳ4ȳ

2
3,

ȳ′5 = ε−2(k1 − k3ȳ2ȳ5). (4.4.4)

Notice that (Case I) is a particular case of (Case IV), when a3 = 2 and all variables
are equilibrated.

We can provide a hybrid description of the cell cycle, by decomposing the periodic orbit
into three modes (Fig.4.1). The first mode is the slowest and has the longest duration. It
consists in the dynamics on the slow invariant manifold M1 at low values of y3, and can
be described by the algebraic-differential system ȳ′3 = k1 − k6ȳ3, k

′
4ȳ2 + k4ȳ

′
4ȳ

2
3 − k1 = 0

(part between O1 and O of the orbit in Fig4.1c)). The exit from the invariant manifold
M1 occurs at a critical point (point O in Fig4.1c)).

The next slowest mode corresponds to the decrease of y3 (part between O2 and O1 of
the orbit in Fig4.1c)) and can be described by two terms truncated system ỹ′4 = ε−2(k1 −
k4ỹ4ỹ

2
3), ỹ′3 = −k6ỹ3. Finally, there is a fast mode, corresponding to the fast increase of ỹ3

(part between O and O2 of the orbit in Fig4.1c)) and described by the truncated system
ỹ′4 = −ε2k4ỹ4ỹ

2
3, ỹ

′
3 = ε−2k4ỹ4ỹ

2
3. One can notice (Fig4.1c)) that this hybrid approximation

is very accurate for small ε. At a distance from the tropical manifold, the hybrid orbit
coincides with the one generated by the two terms or by the complete tropicalization.
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However, close to the tropical manifold, the two term and the complete tropicalization are
less accurate than the hybrid approximation described above.

Below we state rigorous estimates describing the slow movement on M1 and the fast
jump towards M2. The two terms description of the dynamics on M2 is a direct conse-
quence of the Proposition 3.3.2 and Lemmas 3.3.4,3.3.6.

The slow movement on M1 corresponds to the Case I of tropical equilibrations and
leads to (4.2.7),(4.2.14),(4.2.15).

To simplify notation, we rewrite the system (4.2.14) for y3, y4 as

x′ = y + yx2 − k0x, (4.4.5)
y′ = ε2(−y − yx2 + k1). (4.4.6)

We can obtain such a presentation by a linear variable change.
Let us define the functions

X(y) =
k2

0 −
√
k2

0 − 4y2

2y ,

X+(y) =
k2

0 +
√
k2

0 − 4y2

2y ,

and the points
y0 = k0/2, x0 = X(y0) = 1.

Lemma 4.4.1. Solutions of (4.4.5), (4.4.6) with initial data x(0), y(0) such that

0 < δ0 < x(0) < X+(y0)− δ0, 0 < y(0) < y0 − δ0, (4.4.7)

where δ0 is a small positive number independent on ε, satisfy

|x(t)−X(y(t))| < C1(ε+ exp(−c1δ0t)), t > T0(x(0), y(0), ε) (4.4.8)

this estimate holds while
y(t) < y0 − δ2, δ2 > 0. (4.4.9)

Démonstration. Let us consider the equation

x′ = y(0) + y(0)x2 − k0x = f(x). (4.4.10)

One observes that

f(x) < −δ4 < 0, x ∈ (X(y(0)) + δ0, X+(y0)− δ0),

f(x) > δ4, x ∈ (δ0, X(y0)− δ0),

and
f ′(x)|x=X(y0) < −δ5 < 0.

Therefore, if 0 < x(0) < k2
0+
√
k2

0−4y(0)2

2y(0) − δ0, then the solution x(t) attains a small δ-
neighborhood of X(y(0)) within a bounded time interval T1(δ, δ0, δ4) :

|x(t, x0, y0)−X(y(0))| < δ, t = T1(δ, δ0, δ4).
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Within a small δ - neighborhood of X(y(0) we set u = x−X(y(0)) and then we can rewrite
(4.4.10) as follows :

u′ = −κu+ h(u), |h(u)| < C1u
2, u(T1) = δ. (4.4.11)

where κ > 0 is independent of δ. Then, if δ is small enough, we have that u(t) < δ for all
t > T1 and

|u(t)| < C(T1) exp(−κt/2), t > T1.

Let us compare now the solution x(t) of (4.4.10) and the corresponding solution x̄(t, x0, y0)
of (4.4.5) with the same initial data. For x̄(t)−x(t) = w one has, since y(t)−y(0) < C(T2)ε2
on any bounded interval t ∈ [0, T2],

wt < a(t)w + ε2g(x, t, w), 0 < t ≤ T2,

where T2 is an arbitrary time such that T2 = O(1) as ε → 0, g is a smooth function and
a(t) is bounded function. Now the Gronwall inequality implies

|w(t)| < C2(T2)ε2, t ∈ [0, T2].

Therefore, one has

|x̄(t, x0, y0)−X(y(t))| < δ + C2ε
2, t = T2(δ, δ0, δ4).

Since the functionX(y) defines a smooth, locally attracting (for y < y0) invariant manifold,
this proves our assertion.

There exists another, more elementary proof. Let us define v = x̄−X(y). Then

v′ = −κ(t)v + h(v) +O(ε), |h(v)| < C1v
2, v(T1) < δ, (4.4.12)

where κ(t) > κ0 while y < y0 − δ0. Again one has v(t) < 2δ for t > T1 (while y < y0 − δ0).
Thus,

v′ ≤ −κ0
2 v +O(ε)

that entails the need estimate (4.4.8).

Let us find some estimates of solutions at y = y0, x = x0. Our goal is to prove that at
this point x(t) starts to increase sharply. After this, the terms ±yx2 play the main role in
the equations (4.4.5),(4.4.6), and the other terms can be removed while the x-component
is big.

Let us introduce new variables u, v by

x− x0 = v, u = y − y0.

For u, v one obtains
v′ = k0

2 v
2 + u(1 + (1 + v)2), (4.4.13)

u′ = ε2(−(k0
2 + u)(1 + (1 + v)2) + k1) = ε2g(u, v). (4.4.14)

Let us consider for this system the Cauchy problem with initial data

v(0) = v0, u(0) = u0. (4.4.15)
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Lemma 4.4.2. Consider the Cauchy problem (4.4.13), (4.4.14) and (4.4.15) under as-
sumptions that

u0 = κ > 0, |v0| < δ5,

and
k1 > k0, (4.4.16)

where δ0, δ5 are small enough (but independent on ε). Let A be a large positive number
independent of ε. Then within some interval t ∈ (τ0(δ5, k0, k1, A), τ1(δ5, k0, k1, A)) one has

u(t) > 0, v(t) ≥ A, v(τ0) = A. (4.4.17)

Démonstration. Let us consider the Cauchy problem

w′ = k0
2 w

2, w(0) = v0 = v(0) (4.4.18)

It is clear, by the comparison principle, that

v(t) ≥ w(t)

while u(t) > 0. Consequently, the assertion w(τ0) = A proves the lemma.
Let us prove first that if δ6 is small enough (but independent on ε), for some t = τ1 we

have
v(τ1) = δ6, (4.4.19)

where δ6 is any positive number such that

δ5 < δ6 <

√
2k1 − k0

k0
− 1.

The root in the right hand side > 1 since k1 > k0 (see (4.4.16)). Without loss of generality,
we assume that

v(t) < δ6, 0 < t < τ1, v(τ1) = δ6. (4.4.20)

Assume u(t) ≥ 0 within some time interval [0, τ2], and u(τ2) = 0 for some τ2 < τ1.
Since u(0) = 0, we have τ2 > 0. We can suppose without loss of generality that τ2 is the
first moment, where u(τ2) = 0. Then

u′(τ2) ≤ 0.

But then we obtain a contradiction with (4.4.14) at t = τ2, since the right hand side of
this equation is positive at this time moment.

Therefore, u(t) > 0 for all t from [0, τ1] if v(t) < δ6 for such t. Then v(t) ≥ w(t) on
this time interval. The function w can be found, and an easy computation gives

w(t) = (w−1(0)− 2k−1
0 t)−1) = (u0 − 2k−1

0 t). (4.4.21)

Assume that v(t) < δ6 for all t. Then (4.4.21) holds for all t, but w(τ1) > δ6 for some τ1.
We have obtained a contradiction, thus (4.4.19) is proved.

Let us prove that v(t) = A for some t > τ1. Consider an interval [τ1, T ] such that

|v(t)| < A, t ∈ [τ1, T ], v(τ1) = δ6. (4.4.22)
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Then (4.4.14) implies

u′ ≤ ε2((k0
2 + |u|)(1 + (1 +A)2) + k1)), (4.4.23)

that gives, by the Gronwall lemma,

u(t) < C2u(0) exp(C1(A)ε2t). (4.4.24)

Within interval (t1, T ] one has then

u(t) < C4κ, t ∈ [0, T ], (4.4.25)

where
C4κ <

k0
8 δ6.

Therefore,
v′ ≥ k0

2 v
2 − C4κ, t ∈ [0, T ]. (4.4.26)

Then (4.4.26) entails
v′ ≥ k0

4 v, t ∈ [0, T ], (4.4.27)

This gives
v(t) ≥ δ6 exp(k0

4 (t− t1)).

This leads to a contradiction for T large enough. However, let us remark that the time
moment T is uniform in ε) as ε→ 0.

This result can be reinforced. Actually, x(t) attains values of the order O(ε−2).

Lemma 4.4.3. Assume that for some time moment t1 one has

x(t1) = A >> 1, y(t1) ≥ k0/2. (4.4.28)

Then
x(t) ≥ (A−1 − 1

2σ(t− t1))−1, (4.4.29)

y(t) ≥ σ, (4.4.30)

for σ,A such that
σ > 2k0A, σ > 2(k0 + k1) exp(−2σ−1), (4.4.31)

and t such that
(A−1 − 1

2σ(t− t1)) ≥ ε2. (4.4.32)

Démonstration. Remark : to satisfy (4.4.31) it suffices to set σ = 3k0A.
Suppose that either the estimate (4.4.29) (case A) or the second estimate (4.4.30) (case

B) is violated at some T but the both inequalities hold for all t1 ≤ t < T . We can set
t1 = 0. Let us consider the case A. Since (4.4.30) hold, one has

x′ ≥ σx2, x(0) = A, t ∈ [0, T ].

This implies
x′/x2 = (−1/x)′ ≥ σ, x(0) = A.
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Thus,
x ≥ (A−1 − σt)−1.

For t = T this result gives a contradiction with (4.4.29).
Let us consider the case B. Since (4.4.29) hold, one has

y′(t) ≤ −ε2(y + y(A−1 − σ′t)−2 − k1), y(0) = k0/2, t ∈ [0, T ],

where σ′ = σ/2. This implies

y(t) ≤ k0
2 exp(−ε2

∫ t

0
(1+(A−1−σ′s)−2)ds)+ε2k1

∫ t

0
exp(−ε2

∫ t

τ
(1+(A−1−σ′s)−2)ds)dτ.

for t ∈ [0, T ]. Notice∫ t

τ
(1 + (A−1 − σ′s)−2)ds = t− τ + σ′

−1((A−1 − σ′t)−1 − (A−1 − σ′τ)−1).

Thus, for sufficiently small ε, taking into account (4.4.32) one has

y(T ) ≤ C(k0 + k1) exp(−1/σ′), C ∈ (1, 2)

for small ε. Under condition (4.4.31) this result gives a contradiction with (4.4.30).

4.5 Checking condition (4.2.8)

Let us introduce the quantity

S(t) = ε2
∫ t

0
(k6ȳ3(s)− k1)ds. (4.5.1)

Let us notice that eqs.(4.2.14) for ȳ3, ȳ4 yield

S(t) = ε2(ȳ3(0)− ȳ3(t)) + (ȳ4(0)− ȳ4(t)). (4.5.2)

But the equation (4.2.16) for ȳ2 gives

ȳ2(t)− ȳ2(0) = S(t).

Therefore,
ȳ2(t)− ȳ2(0) = ε2(ȳ3(0)− ȳ3(t)) + (ȳ4(0)− ȳ4(t)). (4.5.3)

Now we can formulate a lemma.

Lemma 4.5.1. If ȳ2(0) is large enough and ȳ4(0) is small enough, i.e.,

ȳ4(0) < δ0, ȳ2(0) > C(δ0, k
′
4, k6, k4, k1), (4.5.4)

then (4.2.8) holds, for some δ > 0 and sufficiently small ε, for all t.
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Figure 4.1 – Limit cycle behavior of the paradigmatic cell cycle model from [140]. (a)
The three main processes during the embryonic cell cycle are, in order of the timescales,
fast increase of y3 (active MPF, triggering mitosis), slower decrease of y3 and very slow
increase of y4 (inactive MPF). (b) Two invariant manifolds corresponding to the two slow
processes are close to the tropical manifolds (blue lines) and result from equilibration of
the variables (equilibration of y4 corresponds to M2 and equilibration of y3 corresponds
to M1). (c) A three modes hybrid approximation of the cell cycle (in red) compared to
the original limit cycle (black crosses).
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Démonstration. To prove this lemma, we use our previous results on the cycle form. The
condition for ȳ4(0) gives that ȳ4(t) is an increasing function on the time interval up to
the point t where ȳ4(t) attains a critical value y∗0, where the manifold lost stability and
a growth of ȳ3 starts. Therefore , using (4.5.3), we remark that for small ε on this time
interval

ȳ2(t) ≥ ȳ2(0) +O(ε2) > δ0/2. (4.5.5)

On the interval of the growth we have ȳ3(t) < C1ε
−2 and ȳ4 < C2, as it was shown above.

Let us prove an auxiliary assertion that ȳ3 < Cε−2 for some C. If at some time moment
t = t1 we have ȳ3 = C3ε

−2. Notice that while k6ȳ3 > k1 we have

(ε2ȳ3 + ȳ4)′ < 0.

Therefore, y3 is a time decreasing function that implies ε2ȳ3(t) < ε2ȳ3(t1) = C3. This holds
for t such that ȳ3(t) > k1/k6. For all the rest t one has ȳ3(t) ≤ k1/k6 and our assertion is
proved.

Therefore, again (4.5.3) gives

ȳ2(t) ≥ ȳ2(0)− C1(k′4, k6, k4, k1)− C2 + δ0 > δ0, (4.5.6)

if C(δ0, k
′
4, k6, k4, k1) > C1 + C2.

4.6 Tropical equilibrations and reduction of model 2

We seek reductions of this system for small ε. Notice that y1, y3 are slower than y2.
Therefore one can assume that first we can express y2 via y1. This gives, by (4.1.7) that

k4
y1

1 + y1
= k5

y2
1 + y2

+ o(1), ε→ 0. (4.6.1)

Setting b = k5/k4, one has

y2 = y1
b+ (b− 1)y1

+ o(1), ε→ 0. (4.6.2)

This leads to a shorted system

y′1 = k1ε− k2ε
3y3 − k3ε

2y1, (4.6.3)

y′3 = k6
y1

b+ (b− 1)y1
− ε−2 y3

1 + y3
. (4.6.4)

Here y3 is a fast mode and y1 is a slow one. Therefore, we can express y3 via y1, that
gives

ε2k6
y1

b+ (b− 1)y1
= y3

1 + y3
, (4.6.5)

and since y3 is thus small, we obtain

y3 = ε2k6
y1

b+ (b− 1)y1
+ o(ε2). (4.6.6)

Finally, we have only a single equation

y′1 = k1ε− k2ε
5k6

y1
b+ (b− 1)y1

− k3ε
2y1. (4.6.7)
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We conclude that for small ε the Model 2 does not exhibit oscillations.
The system is excitable for small ε, i.e., all the solutions are convergent to an equilib-

rium given by the asymptotic

y1 = k1
k3

(ε−1 +O(1)). (4.6.8)

Here
y3 = O(ε2)

is small. Assume that
b 6= 1.

Then, by (4.6.2),
y2 = f(y1) = (b− 1)−1 = O(1).

If b = 1 we have
y2 = b−1y1 = O(ε−1),

we observe a resonance effect.
This heuristic reasoning is rendered rigorous by the following

Theorem 4.6.1. Let
b > 1.

For sufficiently small ε all the trajectories of Model 2 with initial data such that

0 < yi(0) < C1 (4.6.9)

converge to the equilibrium given by asymptotics (4.6.8), (4.6.6) and (4.6.2).

Démonstration. It is easy to show, that Model 2 conserve the positivity : if yi(0) > 0 then
yi(t) > 0 (see, for example, Smoller 1984). So, we can assume that yi(t) > 0.

We introduce the new variable v by

y2 = v + f(y1), f(y1) = y1
b+ (b− 1)y1

.

The meaning of this variable is transparent : the v defines a deviation of y2 from the
invariant manifold. Then the Model 2 equations become

y′1 = k1ε− k2ε
3y3 − k3ε

2y1, (4.6.10)

v′ = −k4ε
−3 v

(1 + f(y1) + v)(1 + f(y1))−b(b+(b−1)y1)−2(k1ε−k2ε
3y3−k3ε

3y1), (4.6.11)

y′3 = k6( y1
b+ (b− 1)y1

+ v)− ε−2 y3
1 + y3

. (4.6.12)

Here
v(0) = 0

.
Let us prove an auxiliary lemma.

Lemma 4.6.2. Solutions of the Cauchy problem (4.6.10)-(4.6.11) satisfy

|v(t)| < C2ε
4, y1(t) < C1ε

−1, y3(t) < C3ε
2 (4.6.13)

for sufficiently small ε and some Ci > 0.
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Démonstration. Assume (4.6.13) hold on t ∈ (0, T ) and, say, v(T ) = C2ε
4 (other cases can

be considered in a similar way). Then (4.6.11) implies v′(t) ≥ 0. On other hand, we see
that

v′(T ) < −k4ε
−3c0C2ε

4 + c1(b, C3, C1, k2, k3)ε < 0

that leads to a contradiction.

We obtain then
y′1 = k1ε− k2ε

3y3 − k3ε
3y1, (4.6.14)

y′3 = k6( y1
b+ (b− 1)y1

+ φ(t, ε))− ε−2 y3
1 + y3

. (4.6.15)

where φ = O(ε4). We repeat the same trick : we introduce w by y3 + w = ε2g(y1), with g
defined by

g = k6
y1

b+ (b− 1)y1
. (4.6.16)

For w, repeating the same procedure as above, we obtain |w| < Cε3. After this we have
the trivial equation

y′1 = k1ε− k2ε
5g(y1)− k3ε

3y1 + ψ(t, ε), (4.6.17)

where |ψ| = O(ε6). This equation shows that all y1 trajectories attain a small neighborhood
of the point k1/k3ε

−2. So, all the trajectories of Model 2 attain a small neighborhood of
the equilibrium. Since this equilibrium is hyperbolic and stable, all the trajectories stay in
this neighborhood and approach equilibrium.

The hyperbolicity can be shown as follows. Let us consider the 3×3 matrix of the linear
operator L that describes a linearization at the equilibrium found above. The entries of
this matrix have the form

L11 = −ε2, L12 = 0, L13 = ε3

L21 = c1ε
−3y1(1 + y1)2 = O(ε−2), L22 = −c2ε

−3y2(1 + y2)2 = O(ε−3), L23 = 0,

where ci > 0 and

L33 = −c3ε
−2y3(1 + y3)2 = c4, L31 = 0, L32 = 1, c3, c4 > 0.

The corresponding characteristic equation have the form

(ε2 + λ)(c2ε
−3 + λ)(c4 + λ) = c5ε.

and 3 roots : close to −ε2, −c2ε
−3 and −c4 (these roots correspond a slow motion, very

fast motion and average speed motion, here we have a spectrum of modes with 3 different
rates). Thus, the equilibrium is a hyperbolic attractor.

Discussion. This theorem shows that the asymptotic behaviour of the family of models
parametrized by ε can be qualitatively different from the behaviour of a model with a
finite value of ε. Indeed, Model 2 has a stable limit cycle for ε = 0.1, but (contrary to
Model 1) undergoes a Hopf bifurcation when ε becomes very small. Another consequence
of this difference is the following. The period and amplitude of oscillations of Model 1
diverge when ε → 0, whereas Model 1 can not produce oscillations with arbitrarily large
amplitude and period. If the accumulation time of the cyclin increases too much in Model
2, then it becomes impossible to recover very low values. This shows that having an
autocatalytic process (positive self-regulation of MPF) is a much more effective way to
obtain excitability and robust oscillations in Model 1.
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4.7 Tropical approach for excitable systems. Two compo-
nent case.

Let us consider a more general class of excitable systems to which we can apply tropical
ideas in order to find piecewise approximations of the dynamics. We have shown that Model
1 described by the eqs. (4.1.1) is excitable. Indeed, after a large excursion of amplitude
ε−2, the variable y3 returns to very low values of order ε2, corresponding to the invariant
manifold M1. We show now that the similar property is satisfied for more general two
component systems of the form

x′ = y(xm + P (x, y))− k0x, x(0) = x0 (4.7.1)

y′ = −ε2(yxn + yQ(x, y)− k1), y(0) = y0. (4.7.2)

where P,Q are polynomials such that

degxP < m, degxQ < n, (4.7.3)

and k1 ≥ 0. Here m,n are positive integers, n,m ≥ 2. With these equations we associate
a tropically truncated system (TTS), namely

x′ = yxm, (4.7.4)

y′ = −ε2yxn. (4.7.5)

Let us investigate first the TTS. This is a fast/slow system, with x the fast variable
and y the slow variable. Starting from x(0) = x0, y(0) = y0, the fast part of the trajectory
can be approximated by the equation x′ = yox

m, that has the solution x(t) = (x1−m
0 −

(m− 1)y(0)t)1/(1−m). Because 1−m < 0 this means that x(t) increases to large values in
a finite time x1−m

0 /((m− 1)y(0)) that does not depend on ε.
However, the increase of x is bounded. Indeed, TTS system has a first integral. We can

easily check that that

V (x, y) = ε2xn−m+1 + (n−m+ 1)y = const (4.7.6)

on the trajectories of (4.7.4), (4.7.5). Therefore,

x′ = (V0 − ε2xn−m+1)xm, x(0) = x0 > 0. (4.7.7)

Thus, the solutions of this Cauchy problem possess the following properties.
i. Under the condition

n ≥ m (4.7.8)

and if V (x(0), y(0)) = V0, then all the solutions converge to

xeq = (V0ε
−2)β, β = 2

n−m+ 1 . (4.7.9)

ii The solutions x(t) attain values of the order O(ε−β) during the time of the order
O(1) independent of ε. Indeed, from it follows, when n ≥ m, that x(t) has a maximal
value satisfying V0 = ε2xn−m+1

max , hence xmax = V
β/2

0 ε−β. After reaching this maximum,
solutions approach to xeq within a short time interval of the order

Tε = C0ε
β(m−1).
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Let us prove that the solutions of the Cauchy problem for the full system (4.7.1),(4.7.2),
have similar excitable behavior. We need to show analogues of the key lemmas, obtained in
preceding sections for the case m = n = 2. These assertions show that, under conditions,
the tropical principle is working for initial system (4.7.1), (4.7.2) and the solutions of this
system can be approximated by solutions of corresponding TTS.

Lemma 4.7.1. Assume
x(0) = A >> 1, y(0) ≥ k0/2, (4.7.10)

where k0 > 0. Then the solution of the Cauchy problem (4.7.1), (4.7.2) satisfies

x(t) ≥ (A1−m − (m− 1)σt)1/(1−m), (4.7.11)

y(t) ≥ σ(k0, A), (4.7.12)
for some σ and t such that

A1−m − (m− 1)σt ≥ εβ(m−1). (4.7.13)

Démonstration. Suppose that either the estimate (4.7.11) (case A) or the second estimate
(4.7.12) (case B) is not valid at some T but the both inequalities hold for all 0 ≤ t < T .

Let us consider first the case A. Since (4.7.12) holds, one has

x′ > σ1x
m, x(0) = A, t ∈ [0, T ],

for some σ1 satisfying 0 < σ1 < σ. This implies

x′/xm = −((m− 1)−1x1−m)′ > σ1, x(0) = A.

Thus, using 1−m > 0 it follows

x < (A1−m − (m− 1)σt)1/(1−m).

For t = T this result gives a contradiction with (4.7.11).
Let us consider the case B. Since (4.7.11) holds, one has

y′(t) ≤ −ε2c1y(A−1 − (m− 1)σt)−n/(m−1) + ε2k1, y(0) = k0/2, t ∈ [0, T ].

for some c1 > 0 and small ε. Here we have used degxQ < n and majorated Q by a multiple
of xn (this is possible because x(0) = A >> 1). This implies

y(t) ≤ k0
2 exp(−ε2

∫ t

0
(A−1 − (m− 1)σs)−n/(m−1)ds)+

+ε2k1

∫ t

0
exp(−ε2

∫ t

τ
(A−1 − (m− 1)σs)−n/(m−1)ds)dτ

for t ∈ [0, T ]. Notice that

ε2(
∫ t

τ
(A−1 − (m− 1)σs)−n/(m−1)ds) ≤

≤ ε2c1σ
−1(A−1 − (m− 1)σt)−n/(m−1)+1 − (A−1 − (m− 1)στ)−n/(m−1)+1 <

< C2ε
2+β(m−1)(1− n

m−1 ) ≤ C2.

Thus, for sufficiently small ε, taking into account (4.7.13) one has

y(T ) ≤ k0
2 exp(−C3σ

−1).

This result gives a contradiction with (4.7.12), and the lemma is proved.
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Our next goal is to show that solutions of our system return to the domain A(M), the
attraction domain of the stable part of our slow manifold, defined now by

0 < xm−1y < const, y < y0. (4.7.14)

The main idea is to compare the solutions of the Cauchy problems for the initial system
and tropically truncated on some time interval [t3, T ), where

T − t3 = O(εβ(m−1)).

We set t3 = 0 to simplify notation. This is possible since all equations are autonomous.
The exponent β(m− 1) can be justified as follows.

The truncated system reduces to the equation

x′ = (V0 − ε2xn−m+1)xm.

If we make a rescaling (as above, for the case m = 2 = n)

τ = ε−β(m−1)t, x = ε−βx̄

we obtain an equation that does not involve ε at all :

dx̄

dτ
= (V0 − x̄n−m+1)x̄m.

Therefore, the characteristic rate for the convergence to the equilibrium of x isO(ε−β(m−1)),
and a natural time interval is [0, O(εβ(m−1)).

Let us consider the two Cauchy problems

x′ = y(xm + P (x, y))− k0x, x(0) = cε−2 (4.7.15)

y′ = ε2(−yxn + yQ(x) + k1), y(0) = σ (4.7.16)

and
x̃′ = ỹxm, x̃(0) = cε−2 (4.7.17)

ỹ′ = −ε2ỹx̃n, ỹ(0) = σ. (4.7.18)

Let us set z = (x, y)tr and z̃ = (x̃, ỹ)tr. Then for difference w =
(
w1
w2

)
= z − z̃ one

obtains the following matrix evolution equation

w′ = L(t)w + F (w), (4.7.19)

where L(t) is the 2 matrix with entries

L11 = 2ỹx̃m−1 = O(ε−β(m−1)), L12 = x̃m = O(ε−βm)

L21 = −2ε2ỹx̃n−1 = O(ε2−β(n−1)), L12 = −ε2x̃n = O(ε2−βn),

the vector F has the form
F1 = (ỹ + w1)(h1 + P ), (4.7.20)

and
F2 = −ε2(ỹ + w2)(h2 +Q) + ε2k1, (4.7.21)
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where hi satisfy estimates

|h1| ≤ C(x̃m−2w2
1 + x̃m−3w3

1 + ...+ wm1 ). (4.7.22)

and
|h2| ≤ C(x̃n−2w2

2 + x̃n−3w3
2 + ...+ wn2 ). (4.7.23)

Let us observe that the trace of L and DetL can be estimated as

|Tr(L)| < cε2−βn, |DetL| < cε4−2βn. (4.7.24)

Therefore, for the eigenvalues λ1, λ2 of L one obtains

Reλi < cε2−βn. (4.7.25)

We rewrite (4.7.19) as an integral equation (here we observe that w(0) = 0 since the
initial data is the same in (4.7.15), (4.7.16) and (4.7.17), (4.7.18)

w(t) =
∫ t

0
exp(L(t− s))F (w(s)ds. (4.7.26)

Lemma 4.7.2. If ε > 0 is small enough then within time interval [0, T ], where T =
Cεβ(m−1), the solution to (4.7.26) exists and satisfies the estimate

|w1(t)| < B, |w2(t)| < εβB, t ∈ [0, T ], (4.7.27)

for some B (which is uniform as ε → 0). Here w1 and w2 are the two components of the
vector w.

Démonstration. We apply the Schauder theorem. Let us consider (4.7.26) on the set D(B)
of continuous functions such that 4.7.27 holds. Let us prove that a nonlinear map S defined
by the right hand side of (4.7.27), maps the domain D(B) into itself.

Notice that, according to estimate (4.7.25),

|| exp(L(t− s))|| < C0 exp(−cε2−βn)|t− s|).

Since |t− s| ≤ T = O(εβm), one obtains

|| exp(L(t− s))|| ≤ C1, t, s ∈ [0, T ], (4.7.28)

Therefore,

|Sw(·)| = |
∫ t

0
exp(L(t− s))F (w(s)ds| ≤ C1ε

β(m−1) sup
w∈D(B)

|F |. (4.7.29)

Due to above relations for F, h, and since x̃ < Cε−β, ỹ < C, one obtains by (4.7.22)

sup
w∈D(B)

|h1| ≤ C3ε
−β(m−2),

sup
w∈D(B)

|h2| ≤ C4ε
2−β(n−2),

sup
w∈D(B)

|P | ≤ C5ε
−β(m−1),
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sup
w∈D(B)

ε2|Q| ≤ C6ε
2−β(n−1).

Notice that for some C,C1 uniform in ε one has

T (ε)ε−β(m−2) < Cεβ,

T (ε)ε2−β(n−2) < Cε2β < C1,

T (ε)ε−β(m−2) < C,

and
T (ε)ε2−β(n−1) < Cεβ < C1.

Therefore, if B >> C3, our map S fulfills

S(D(B)) ⊂ D(B).

The estimate of w2 can be improved in the same way, that gives

|w2| < cεβm, t ∈ [0, T ]. (4.7.30)

For this it suffices to note that estimates for the second components are proportional to
ε2.

Since the solution x̃(t), ỹ(t) of the tropically truncated system returns in the domain
(4.7.14) and the exact solution, as it is shown, is a small perturbation of this solution, the
exact solution also returns in this domain.

4.8 Generalized two component cell cycle model

Let us consider the generalized two component cell cycle model inspired from Model 1 :

x′ = y + k4yx
m − k0x, x(0) = x0 (4.8.1)

y′ = −ε2(y + k4yx
n − k1), y(0) = y0, (4.8.2)

where k0, k1, k4 are parameters.
Estimates obtained in the previous section, show that the condition n ≥ m is important

for the existence of the cycle. Numerical simulations confirm this conclusion. For n < m
the cycle does not exists (see Fig. 4.2). For n ≥ m and sufficiently large k4 there are stable
oscillations (Fig. 4.3), whereas for smaller k4 we can observe that oscillations are damped
and the solution converges to an equilibrium (Fig. 4.4).

The behavior of the generalized excitable model in the limit cycle case, can be sum-
marized as follows :
- Most of the time, the system evolves on a slow manifold x = X(y) that is stable up to

some y = y0. The speed of movement on this manifold is O(ε−β(m−1). The motion
on the slow manifold is defined by all the terms.

- The speed of the system leaving the slow manifold is O(1).
- There is also a fast manifold, which defines the return to the slow manifold. The motion

on the fast manifold can be described only by the dominant terms (that form the
tropically truncated system).

- The approximated equation of the fast manifold is V0 = ε2xn−m+1 + y.
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Figure 4.2 – Graph of solutions of the system (4.8.1), (4.8.2) for ε = 0.2 and k4 = 2, k0 =
2, k1 = 1 and n = 3,m = 2.

Figure 4.3 – Graph of solutions of the system (4.8.1), (4.8.2) for ε = 0.2 and k4 = 2, k0 =
1, k1 = 1 and n = 5,m = 2.

4.9 Conclusion

We showed that tropical ideas can be usefully employed to reduce and hybridize poly-
nomial or rational dynamical systems occurring in modelling the molecular machinery of
the cell cycle. The main idea consists in keeping only the dominant monomial terms in
the right hand side of the ordinary differential equations. Depending on the position in
phase space, one should keep one, two, or more such terms. The places where two or more
monomial terms are equal form the so-called tropical manifolds. The one term approxi-
mation is valid far from the tropical manifolds, whereas close to tropical manifolds several
dominating terms of opposite signs can equilibrate each other. These “tropical equilibra-
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Figure 4.4 – Graph of solutions of the system (4.8.1), (4.8.2) for ε = 0.2 and k4 = 1, k0 =
1, k1 = 1 and n = 3,m = 2.

tions” of the dominating terms slow down the dynamics and produce attractive invariant
manifolds.

The possible applications of this method are multiple. Generally, the method can be
used to obtain simplified models. In the example studied here, we have started with a five
variables model, that has been reduced to two variables and hybridized. The modes of the
hybrid model have the simple structure of monomial differential or differential-algebraic
equations. Two general methods that we called complete and two terms tropicalizations
provide description of the modes and of the mode changes. However, these general proce-
dures may lead to inaccurate approximations when the full model does not satisfy perma-
nency globally. In such cases, more thorough analysis is needed. We have shown that the
model of embryonic cell cycle has essentially three modes with different timescales, namely
slow accumulation of cyclin, rapid activation of MPF and intermediately rapid degrada-
tion of cyclin and inactivation of MPF. The fastest mode is described by monomial ODEs,
whereas the less fast modes correspond to tropical equilibrations and are described by
differential-algebraic equations.

Several improvements and developments are needed in order to apply these methods
at a larger scale. The computation of tropical equilibrations suffers from combinatorial
explosion. However, for the biochemical network used as working example, the number of
solutions seems to be very small compared to the large combinatorics of monomial terms.
There is hope, that once formulated in constraint logic programming, the problem of equi-
librations could be efficiently computed in practice as a constraint satisfaction problem.
Also, effective methods are needed to compute the transitions between modes. The main
difficulty here is related to walls (segments of the tropical manifolds) crossing. Near walls,
two or more terms are dominant. When these terms are equilibrated, orbits remain close
to the walls and are contained in invariant manifolds. The complete or two terms tropi-
calizations provide general heuristic for mode transitions. These approximations mail fail
close to walls. For instance, as we showed in [101] (see Chapter 2), the complete trop-
icalization predicts sliding modes that evolve on the wall and stay thus close to orbits
of the full system. However, these sliding modes can be too long, leaving the wall when
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the orbits of the full system are already far away. In order to get an accurate description
of the behavior near such walls we had to compute invariant manifolds. Although this is
generally much simpler than integrating the full set of equations, it could become difficult
for tropical equilibrations involving more than two terms. Future work will be dedicated
to developing general methods for this problem.
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of quasi-equilibrium states. Journal of non-newtonian fluid mechanics, 96(1-2) :203–
219, 2001.

[55] A. N. Gorban, I. V. Karlin, and A. Zinovyev. Invariant grids for reaction kinetics.
Physica A, 333 :106–154, 2004.

[56] A. N. Gorban and O. Radulescu. Dynamic and static limitation in multiscale reaction
networks, revisited. In G.B. Marin, D.H. West, and G.S. Yablonsky, editors, Advances
in Chemical Engineering : Mathematics and Chemical Engineering and Kinetics,
volume 34, pages 103–173. Academic Press, 2008.

[57] A. N. Gorban and O. Radulescu. Dynamic and static limitation in reaction net-
works, revisited . In David West Guy B. Marin and Gregory S. Yablonsky, editors,
Advances in Chemical Engineering - Mathematics in Chemical Kinetics and Engi-
neering, volume 34 of Advances in Chemical Engineering, pages 103–173. Elsevier,
2008.

[58] A. N. Gorban, O. Radulescu, and A. Y. Zinovyev. Asymptotology of chemical reac-
tion networks. Chemical Engineering Science, 65 :2310–2324, 2010.

[59] A. N. Gorban and M. Shahzad. The Michaelis-Menten-Stueckelberg Theorem. En-
tropy, (13) :966–1019, 2011.

[60] M. Griffith, T. Courtney, J. Peccoud, and W.H. Sanders. Dynamic partitioning for
hybrid simulation of the bistable HIV-1 transactivation network. Bioinformatics,
22(22) :2782, 2006.

[61] R. Gunawan, Y. Cao, L. Petzold, and F. J. Doyle III. Sensitivity analysis of discrete
stochastic systems. Biophysical Journal, 88(4) :2530–2540, 2005.

[62] P. Hanusse. De l’existence d’un cycle limite dans l’évolution des systemes chimique
ouverts (on the existence of a limit cycle in the evolution of open chemical systems).
Comptes Rendus, Acad. Sci. Paris,(C), 274 :1245–1247, 1972.

[63] L. A. Harris and P. Clancy. A “partitioned leaping” approach for multiscale modeling
of chemical reaction dynamics. The Journal of chemical physics, 125 :144107, 2006.

[64] E. L. Haseltine and J. B. Rawlings. Approximate simulation of coupled fast and
slow reactions for stochastic chemical kinetics. J.Chem.Phys., 117 :6959–6969, 2002.

[65] E. L. Haseltine and J. B. Rawlings. On the origins of approximations for stochastic
chemical kinetics. The Journal of chemical physics, 123 :164115, 2005.

[66] F. G. Helfferich. Systematic approach to elucidation of multistep reaction networks.
The Journal of Physical Chemistry, 93(18) :6676–6681, 1989.

[67] D. Henry. Geometric theory of semilinear parabolic equations.
[68] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker,

and C. S. Woodward. Sundials : Suite of nonlinear and differential/algebraic equation
solvers. ACM Transactions on Mathematical Software (TOMS), 31(3) :363–396,
2005.



BIBLIOGRAPHIE 109

[69] S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal, L. Xu,
P. Mendes, and U. Kummer. CopasiŮa complex pathway simulator. Bioinformatics,
22(24) :3067–3074, 2006.

[70] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J.C. Doyle, H. Kitano, A. P. Arkin,
B. J. Bornstein, D. Bray, A. Cornish-Bowden, et al. The systems biology markup
language (sbml) : a medium for representation and exchange of biochemical network
models. Bioinformatics, 19(4) :524–531, 2003.

[71] A. E. C. Ihekwaba, D. S. Broomhead, R. L. Grimley, N. Benson, and D. B. Kell.
Sensitivity analysis of parameters controlling oscillatory signalling in the nf-κb path-
way : the roles of ikk and iκbα. IEE Syst.Biol., 1 :93–102, 2004.

[72] N. Jamshidi and B. Ø. Palsson. Formulating genome-scale kinetic models in the
post-genome era. Molecular Systems Biology, 4 :171, 2008.

[73] H. G. Kaper and Kaper T. J. Asymptotic analysis of two reduction methods for
systems of chemical reactions. Physica D, (165) :66–93, 2002.

[74] N. Kazantzis and T. Good. Invariant manifolds and the calculation of the long-
term asymptotic response of nonlinear processes using singular PDEs. Computers &
Chemical Engineering, (26) :999–1012, 2002.

[75] Y. N. Kaznessis. Multi-scale models for gene network engineering. Chemical engi-
neering science, 61(3) :940–953, 2006.

[76] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi. Optimization by simulated an-
nealing. science, 220(4598) :671–680, 1983.

[77] B. Krauskopf, H. M. Osinga, E. J. Doedel, M. E. Henderson, J. Guckenheimer,
A. Vladimirsky, M. Dellnitz, and O. Junge. A survey of method’s for computing
(un)stable manifold of vector fields. International Journal of Bifurcation and Chaos,
15 :763–791, 2005.

[78] J. Lam and J. M. Delosme. An efficient simulated annealing schedule : derivation.
Yale University, New Haven, Connecticut, Technical Report, 8816, 1988.

[79] J. Lam and J. M. Delosme. An efficient simulated annealing schedule : implemen-
tation and evaluation. Yale University, New Haven, Connecticut, Technical Report,
8817, 1988.

[80] S.H. Lam and D.A. Goussis. The csp method for simplifying kinetics. International
Journal of Chemical Kinetics, 26 :461–486, 1994.

[81] N. Le Novere, B. Bornstein, A. Broicher, M. Courtot, M. Donizelli, H. Dharuri,
L. Li, H. Sauro, M. Schilstra, B. Shapiro, et al. Biomodels database : a free, central-
ized database of curated, published, quantitative kinetic models of biochemical and
cellular systems. Nucleic acids research, 34(suppl 1) :D689–D691, 2006.

[82] N. Le Novère, M. Hucka, H. Mi, S. Moodie, F. Schreiber, A. Sorokin, E. Demir,
K. Wegner, M.I. Aladjem, S.M. Wimalaratne, et al. The systems biology graphical
notation. Nature biotechnology, 27(8) :735–741, 2009.

[83] H. Li, Y. Cao, L. R. Petzold, and D. T. Gillespie. Algorithms and software
for stochastic simulation of biochemical reacting systems. Biotechnology progress,
24(1) :56–61, 2008.

[84] W. Liebermeister, J. Uhlendorf, and E. Klipp. Modular rate laws for enzy-
matic reactions : thermodynamics, elasticities and implementation. Bioinformatics,
26(12) :1528, 2010.



110 BIBLIOGRAPHIE

[85] P. Lincoln and A. Tiwari. Symbolic systems biology : Hybrid modeling and analysis
of biological networks. Hybrid Systems : Computation and Control, pages 147–165,
2004.

[86] T. Lipniacky, P. Paszek, A. R. Brasier, B. Luxon, and M. Kimmel. Mathematical
model of nf-κb regulatory module. J.Theor.Biol., 228 :195–215, 2004.

[87] G. L. Litvinov and V. P. Maslov. Idempotent mathematics : a correspondence prin-
ciple and its applications to computing. Russian Mathematical Surveys, 51(6) :1210–
1211, 1996.

[88] P. Lochack and C. Meunier. Multiphase averaging for classical systems. Springer,
New York, 1988.

[89] U. Maas and S.B. Pope. Simplifying chemical kinetics : intrinsic low-dimensional
manifolds in composition space. Combust. Flame, 88 :239Ű264, 1992.

[90] W. G. Macready, A. G. Siapas, and S. A. Kauffman. Criticality and parallelism in
combinatorial optimization. Science, 271(5245) :56–59, 1996.

[91] E. A. Mastny, E. L. Haseltine, and J. B. Rawlings. Two classes of quasi-steady-
state model reductions for stochastic kinetics. The Journal of Chemical Physics,
127 :094106, 2007.

[92] A. S. Matveev and A. V. Savkin. Qualitative theory of hybrid dynamical systems.
Birkhauser, 2000.
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