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Abstract We discuss piecewise smooth hybrid systems as models for regulatory networks in
molecular biology. These systems involve both continuous and discrete variables. In the context
of gene networks, the discrete variables allow to switch on and off some of the molecular interac-
tions in the model of the biological system. Piecewise smooth hybrid models are well adapted to
approximate the dynamics of multiscale dissipative systems that occur in molecular biology. We
show how to produce such models by a top down approach that use biological knowledge for a
guided choice of important variables and interactions. Then we propose an algorithm for fitting
parameters of the piecewise smooth models from data. We illustrate some of the possibilities of
this approach by proposing a minimal piecewise smooth model for the cell cycle.
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1 Introduction

Hybrid systems are widely used in automatic con-
trol theory to cope with situations arising when a
finite-state machine is coupled to mechanisms that can
be modeled by differential equations [11]. It is the
case of robots, plant controllers, computer disk drives,
automated highway systems, flight control, etc. The
general behavior of such systems is to pass from one
type of smooth dynamics (mode) described by one set
of differential equations to another smooth dynamics
(mode) described by another set of differential equa-
tions. The command of the modes can be performed
by changing one or several discrete variables. The
mode change can be accompanied or not by jumps
(discontinuities) of the trajectories.

Depending on how the discrete variables are
changed there may be several types of hybrid sys-
tems: switched systems [14], multivalued differential
automata [15], piecewise smooth systems [2]. Notice
that in the last case, the mode changes when the tra-
jectory attains some smooth manifolds.

Piecewise affine hybrid systems have been used to
model dynamics of gene networks [1,3]. In these net-
works, most of the time, the gene variables are close to
discrete values (attractors) and the transitions between
discrete attractors are dictated by the relative position
of the transient values of these variables with respect
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to some thresholds. The transient dynamics leading
to attractors is considered to be piecewise affine where
the linear part of the dynamical equations is defined by
a diagonal matrix with negative entries. This approx-
imation allows to reduce the dynamics of simple ge-
netic circuits to a discrete automaton, and can be used
for various application such as model checking. How-
ever, the study of large networks with this approach
suffers from combinatorial explosion.

We must emphasize that piecewise affine models
are not always good approximations for the dynam-
ics of the modes. The machinery of the cell cycle
is an example. Proteolytic degradation of the cyclins
is switched on rapidly by the cyclin dependent kinase
complexes but between two successive switchings the
complexes have non-linear dynamics implying several
positive (autocatalytic processes) and negative feed-
back loops. These non-linear processes contribute to
the robustness of the mechanism. Another example is
the dynamics of the genetically regulated metabolism.
Genetic changes could be considered as boolean vari-
ables that are turned on and off by their mutual in-
teraction and by the interaction with the metabolites,
but between two successive switchings of the gene
expression the dynamics of metabolism is not linear.
More generally, the dynamics of multi-scale network
belongs to a patchy landscape formed by smooth, low
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dimensional, but curved manifolds, connected by dis-
continuous transitions. The patches represent low di-
mensional local invariant manifolds, typical for multi-
scale dissipative systems, and the transitions corre-
spond to bifurcations of these manifolds [7,6]. Piece-
wise smooth systems can provide more realistic and
more robust models describing these situations.

The idea of piecewise smooth patchy landscape
arises naturally from the model reduction theory. The
dynamics of a multiscale, but nonlinear large model,
can be reduced to the one of a dominant subsys-
tem [12,9,8]. In dynamical systems with separation
of timescales the dominant subsystem depends on
the relative contributions of different variables to the
timescales and on the comparison between timescales.
Both the contributions of different variables to the
timescales of the dynamics and the comparison among
timescales (which timescale is slower which one is
quicker) can change along a trajectory of the system.
Considering that the set of dominant subsystems is fi-
nite, the changes are necessarily discrete. Thus, al-
though one may try and sometimes succeed to find a
global reduced model, the general picture in the case
of multiscale non-linear dissipative systems is a se-
quence of several approximations (modes) valid lo-
cally. The modes integrate the degrees of freedom of
the system that are active for a certain time interval
[12,9,8].

The problem of how the modes can be rigorously
approximated for a given multiscale nonlinear model
will be approached elsewhere. In this paper we pro-
pose a heuristic to construct appropriate modes and ad-
equate piecewise smooth models by using a top-down
approach. Then, we show how the parameters of the
hybrid model can be fitted from data or from trajecto-
ries produced by existing smooth, but more complex
models.

2 Hybrid models

We consider the so-called hybrid dynamical systems
(HDS) consisting of two components: a continuous
part, u, defined by

Wi~ Futt), )
where v = (uj,u9,...,u,) € R", and a discrete
part s(t) € S, where S is a finite set of states.
For molecular networks, the continuous variables are
protein concentrations and the discrete states may be
gene activities described by boolean variables s =
(s1(t), s2(t), ..., sm(t)), where s; € {0,1} (such
boolean gene models are popular, see [4,10] among
many others).

t>0, @2.1)
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There are several possible ways to define the
evolution of the s variables. Rather generally, this
can be done by a time continuous Markov chain with
transition probabilities p(s,s’,u) from the state s
to the state s’ (per unit time) depending on current
state u(t). However, in gene networks, transition
probabilities dependence on u is not smooth. For
instance, the probability for s to jump is close to one if
u goes above some threshold value, and close to zero
if w is smaller than the threshold. We can, in certain
cases, neglect the transition time with respect to the
time needed for u variables to change. Assuming that
some of the discrete variables contribute to production
of u and that other contribute to the degradation of
u we obtain a general model of hybrid piece-wise
smooth dynamical system :

du,;

dt SkP,;k (u) + Pio (u)

= 11

ngil(u) - Q?(u)v

l

n
sj=H()_wipug — hy),
k=1

Il
—

S =H( iy — hy)
k=1
2.2)

where H is the unit step function H(y) = 1,y > 0,
and H(y) = 0,y < 0, Py, P?,Qq, QY are positive,
smooth functions of u; representing production, basal
production, consumption, and basal consumption, re-
spectively. Here w, w are matrices describing the in-
teractions between the u variables, 1 = 1,2,...,n,
7=12,...,N,l=1,...,M and h, h are thresholds.

The class of models (2.2) is still too general. We
shall restrict ourselves to a subclass of piecewise
smooth systems where smooth production and degra-
dation terms will be assumed multivariate monomials
in u, plus some basal terms:

1k
Pii(u) = ajjpuy up™
P(u) = af
2() = agult . uldn
il il Uy n
O(u) = adu; (2.3)

which will be chosen according to a heuristic pre-
sented in the next section.

These models have several advantages with respect
to standard models in molecular biology and neuro-
science based on differential equations. They allow
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us to simulate, in a fairly simple manner, discontinu-
ous transitions occurring in such systems (see a typ-
ical graph describing time evolution of protein con-
centration within cellular cell cycle, Fig. 4.1). The
discontinuous transitions result either from fast pro-
cesses or from strongly non-linear (thresholding) phe-
nomena. This class of models is also scalable in the
sense that more and more details can be introduced at
relatively low cost, by increasing the number of dis-
crete variables and the size of the interaction matrices.

The definition of the modes slightly extends the
one of S-systems, introduced by Savageau [13]. Our
choice was motivated by the fact that S-systems
proved their utility as models for metabolic networks
whose dynamics we want to encompass by consider-
ing the modes. The introduction of basal terms avoids
spurious long living states when some products have
zero concentrations.

The monomial rates can be fully justified for linear
networks of biochemical reactions with totally sepa-
rated constants. The same is true for nonlinear mech-
anisms resulting from mass action law for instance. In
general simplified rates of complex mechanisms can
be rational functions of the concentrations. However,
when concentrations are very large or very small the
monomial power laws are recovered. For a multiscale
system changing regime (for instance a Michaelis
Menten reaction switching from a saturated enzyme
regime to a small concentration substrate regime) one
can use the discrete variables to illustrate the change.

In the next section we illustrate the possibilities of
this model and show that (2.2) can simulate the mitotic
oscillations of the cell cycle.

3 Heuristic for choosing the discrete
variables and the multivariate
monomial terms

The interactions between the molecular variables of
the model can occur at several levels:

i) The discrete interactions.

Discrete interactions manifest themselves punctu-
ally as a consequence of thresholding of rapid phe-
nomena. They contribute to changing the discrete
variables s;, 5;.

One protein can contribute to switching on or off
the discrete variables commanding the production
or the degradation of another protein. The action
of u; on u; is positive (an activation) if w;; > 0
(contribute to turn on production) or if w;; < 0
(contribute to turn off degradation). Conversely
the action of u; on u; is negative if w;; < 0 or
if wj; > 0.

ii The continuous interactions.

The continuous interactions guide the dynamics of
the modes. During the mode dynamics the vari-
ables s;, 5; are fixed. The continuous variable u;
activates u; if either ozj-k > 0 or d;l < 0, for some
k,l. Conversely, u; inactivates u; if either aé-k <0
or d;-l > 0, for some £, [.

In the following we provide a heuristic allowing to
produce hybrid models.

In order to define a hybrid model we need a hy-
brid interaction scheme. This consists in saying, for
each given species, whether its production/degradation
can be switched on and off and by which species, also
which species modulate the production/degradation of
a given species in a smooth way. The representation of
the hybrid interaction scheme can be given as a regu-
lated reaction graph.

A regulated reaction graph is a quadruple
(V,R,E, E,). The triplet (V,R,E), where
E C VX RUR x V, defines a reaction bipar-
tite graph, ie (z,y) € Eiffz € V,y € Randz is a
substrate of R, or x € R,y € V and y is a product of
z. B, C V x Ris the set that defines regulations, for
instance (z, z) € E, if z € V regulates z € R.

Consistently with the choice (2.2),(2.3) for
piecewise-smooth systems the stoichiometry of the
reaction graph (V,R,E) is mono-molecular, any
reaction has at most one substrate and at most one
product (generalizations are possible, but will not be
discussed here).

Some of the regulations in £, are discrete and some
are continuous and we can define the partition E, =
EU E¢. Similarly, there is a partition of the reactions
R = R®U R?®. A reaction y belongs to the switched
reactions y € R® if (x,y) € E%, forsome z € V.

The role of the regulators (continuous if they mod-
ulate the reaction rate, discrete if they contribute to
switching it on and off) should be indicated on the
graph together with the signs of the regulations.

Given a reaction, we identify its substrate and the
regulators. The non-basal term in the reaction rate is
a product of the concentrations of the substrates, con-
centrations of activators, divided by the concentrations
of inhibitors. The basal term is constant if there is no
substrate, or proportional to the concentration of the
substrate (for instance in consumption reactions).

Assuming that there are n species © € R" and
that the reactions have stoichiometric vectors v;, 1 <
j < m, one obtains the following piecewise-smooth
model:
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du
== > iR+ Y v(Ri(w)or(u)+ Ry (w)
jeRe keRd
(3.1

where o (0) = H(}_(; jyepr wrju; — hi). The
relation between oy, and s;, 5; from Eq.2.2 is straight-
forward.

The reaction rates have the forms given by (2.3).
The monomial exponents o, dé and the final rates

can be obtain from the following heuristic rules:

i) If areaction j is activated then aé = 1 for all activa-
tors and aé = —1 for all inhibitors 7 in the absence
of cooperativity. Cooperativity may be taken into
account by considering ]aé\ > 1.

ii) Basal rates are constant for reactions without sub-
strates and proportional to the concentration of the
substrate otherwise.

iii) If activated reactions are present with intermit-
tence, their non-basal rates are multiplied by dis-
crete variables s;.

As an example let us consider the minimal model
proposed by Goldbeter for mitotic oscillations of the
cell cycle [5]. Basically, this consists of three variables
C (cyclin), M (cyclin dependent kinase complex) and
X (proteolytic enzyme, most probably a polo-like ki-
nase). The production of M is activated by C (also
by M which is auto-catalytic), the production of X is
activated by M and the degradation of C is activated
by X. The hybrid interaction scheme contains six re-
actions. We decided that the degradation of the cyclin
C' acts discretely (on/off mechanism) and that all the
other reactions are always present in the model (their
rates are smoothly regulated). Then the hybrid model
is the following:

dC ~ - -
—r =k - RCHX — )~ KC
dM -

dX ~

3.2)

where H is the Heaviside unit step function.

4 Reverse engineering of hybrid models

We would like to develop a method allowing to find
the parameters of a model from the class introduced
above that best describes the observed trajectories of
a biological system. These trajectories can come from
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experiments or can be produced by non-hybrid mod-
els. In both situations we obtain a model whose pa-
rameters can be easily interpreted in biological terms.
The hybrid model can be further analyzed or used to
model more complex situations.

Geldbeter model
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Fig.4.1. (Middle) Regulated reaction graph for the min-
imal cell cycle model. Continuous arrows represent reac-
tions, dotted arrows represent regulations. (s) regulations
smoothly modulate the rates. (d) regulations discretely turn
on and off the reaction rates. (Left) Trajectories of the non-
hybrid model by Golbeter [5]. (Right) Trajectories of the
hybrid model.

In the following we present a reverse engineering
algorithm that works well for systems with sharp tran-
sitions.

Data. n trajectories (time series) wuy(t), ..., u,(t)
given at time moments %o, ¢1, ..., ty. A regulated re-
action graph (the smooth/discrete partition of the reg-
ulations can be unspecified).

Output. A model of the type (2.2),(2.3) with values
of the parameters that fit well the data.

The algorithm has several steps.

I. Splitting of the trajectory into smooth parts.

We look for K time intervals I, Io, ..., I . The dy-
namics on each of the intervals is smooth, it is given
by (2.2) with the s variables fixed. Mode transitions
(change of the variables) occur at the borders of these
intervals. We denote the switching times as 71, ...Tx.

Finding 71 is a problem of singularity detection.
This could be done by various methods, for example
by wavelet analysis. We have chosen as criterium the
value of the second derivative of u;. For piecewise
smooth systems, the derivatives of the trajectories are
discontinuous at the switching times 7. The second
derivative has delta-Dirac components located at 7,
which will show up as peaks in the numerically esti-
mated second derivatives.

II. Identification of the mode transitions.
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Given a switching time 7, the mode transition is de-
fined by the set of values values o; indicating reactions
to be turned on or off at 7. The presence of a disconti-
nuity is indicated by a peak in the second derivative of
one or several species u;. Without knowing which re-
action in the regulated reaction graph has discrete be-
havior, there are several possible choices for such reac-
tions. Each one of this choices could lead to a different
hybrid model corresponding to a different characteri-
zation of the interactions as discrete and continuous.
This step is supervised and could take into account bi-
ologist’s intuition.

The discontinuities of the trajectories give the tran-
sitions but not the first mode. This choice is also su-
pervised and takes into account periodicity constraints.
From the first mode and from the transitions, all the
modes (values of o; on the intervals ;) are straight-
forwardly obtained.

III. Determining the mode internal parameters.

The mode internal parameters are obtained by sim-
ulating annealing. Let u}"°%(¢) be the continuous hy-
brid trajectories obtained by integrating the modes be-
tween the calculated transition times. The simulated
annealing algorithm minimizes the following objective
function:

F =Y Coluf™® (ty) — ui(ty))”
ik

C}, are positive weights that increase with time. We
thus penalize large time deviations that can arise from
period misfit.

IV. Determining the mode control parameters.

Let o = H(Q (1, jyepr Wmstj — hy) be the dis-
crete variables determined above. Let o7 be the con-
stant values of 0,,, on T}. Consider now the optimal
trajectories u!™°%*(¢;) obtained before.

Then, one should have

( Z wmju;nOdes*(tl)—hj)(flT > 0,forallt; € Ty,
(m.j)eEr
4.1)
which is a linear programming problem for w,,,; that
can be resolved (if it has a solution) in polynomial
time.

The algorithm has been applied to the minimal cell
cycle model by Golbeter and the result is shown in
Fig. 4.1. Of course the fit is not perfect and one should
by no means expect a perfect fit. One of the reason
of the differences is that the model by Goldbeter uses
degradation terms that saturate and are practically con-
stant on the descending slope of the variables M, X,
while our linear degradation terms lead to exponential
decrease.

5 Conclusion

The results that we present are a proof of princi-
ple that piecewise smooth hybrid models can be con-
structed with a simple heuristic from basic informa-
tion about biochemical interactions. Using this class of
hybrid models instead of piecewise-linear approxima-
tions provides, in many situations, a better balance be-
tween discrete and smooth interactions. For instance,
the hybrid cell cycle model presented here has only
two discrete transitions per period and it is very robust.
A piecewise-linear version of the same model, would
need a lot more discrete transitions per period which
will reduce robustness and increase the difficulty of
the inversion procedure. In the future we will apply
the heuristic and the fitting algorithm to obtain a real-
istic model for the eucaryotic cell cycle.
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