
T E C H N I C A L R E L E A S E

PhysiCell Studio: a graphical tool
to make agent-based modeling
more accessible

Submitted: 27 January 2024
Accepted: 10 June 2024
Published: 19 June 2024

* Corresponding author. E-mail:
macklinp@iu.edu

Published by GigaScience Press.

Preprint submitted at https:
//doi.org/10.1101/2023.10.24.563727

Included in the series: PhysiCell
Ecosystem (https://doi.org/10.46471/
GIGABYTE_SERIES_0003)

This is an Open Access article
distributed under the terms of the
Creative Commons Attribution
License (https://creativecommons.
org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and
reproduction in any medium,
provided the original work is
properly cited.

Gigabyte, 2024, 1–20

Randy Heiland1, Daniel Bergman2,3, Blair Lyons4, Grant Waldow5,
Julie Cass4, Heber Lima da Rocha1, Marco Ruscone6,7,8,9, Vincent Noël6,7,8
and Paul Macklin1,*

1 Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
2 Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University,

Baltimore, MD, USA
3 Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
4 Allen Institute for Cell Science, Seattle, WA, USA
5 University of Wisconsin, Madison, WI, USA
6 Institut Curie, Université PSL, F-75005, Paris, France
7 INSERM, U900, F-75005, Paris, France
8 Mines ParisTech, Université PSL, F-75005, Paris, France
9 Sorbonne Université, Collège Doctoral, F-75005, Paris, France

ABSTRACT
Defining a multicellular model can be challenging. There may be hundreds of parameters that
specify the attributes and behaviors of objects. In the best case, the model will be defined using
some format specification – a markup language – that will provide easy model sharing (and a
minimal step toward reproducibility). PhysiCell is an open-source, physics-based multicellular
simulation framework with an active and growing user community. It uses XML to define a
model and, traditionally, users needed to manually edit the XML to modify the model. PhysiCell
Studio is a tool to make this task easier. It provides a GUI that allows editing the XML model
definition, including the creation and deletion of fundamental objects: cell types and substrates
in the microenvironment. It also lets users build their model by defining initial conditions and
biological rules, run simulations, and view results interactively. PhysiCell Studio has evolved over
multiple workshops and academic courses in recent years, which has led to many improvements.
There is both a desktop and cloud version. Its design and development has benefited from an
active undergraduate and graduate research program. Like PhysiCell, the Studio is open-source
software and contributions from the community are encouraged.

Subjects Software and Workflows, Cell Biology, Systems Biology

INTRODUCTION AND BACKGROUND
Agent-based simulation frameworks [1] offer various approaches to modeling biological
systems. PhysiCell [2] models cells as agents with independent attributes (e.g., position,
volume, cycle status) and phenotypic behaviors (e.g., adhesion/repulsion, motility,
secretion). PhysiCell is written in C++ and a model’s parameters are defined using the
eXtensible Markup Language (XML). As PhysiCell has evolved, many model parameters that
were originally defined in C++ have been moved into XML. While this has been a definite
improvement for modifying parameters during a model’s development, it still poses
significant challenges. Any moderately complex model now requires a rather large XML file,
which makes it challenging to edit by hand. Some would argue that XML should not even be

Gigabyte, 2024, DOI: 10.46471/gigabyte.128 1/20

mailto:macklinp@iu.edu
mailto:macklinp@iu.edu
mailto:macklinp@iu.edu
mailto:macklinp@iu.edu
mailto:macklinp@iu.edu
mailto:macklinp@iu.edu
mailto:macklinp@iu.edu
mailto:macklinp@iu.edu
mailto:macklinp@iu.edu
mailto:macklinp@iu.edu
mailto:macklinp@iu.edu
mailto:macklinp@iu.edu
mailto:macklinp@iu.edu
mailto:macklinp@iu.edu
mailto:macklinp@iu.edu
https://doi.org/10.1101/2023.10.24.563727
https://doi.org/10.1101/2023.10.24.563727
https://doi.org/10.46471/GIGABYTE_SERIES_0003
https://doi.org/10.46471/GIGABYTE_SERIES_0003
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.46471/gigabyte.128


R. Heiland et al.

edited by humans – that it was created primarily to be just a “machine-readable” (and
editable) format. Unless a user is familiar with a text editor that supports XML syntax and
can, for example, collapse sections of hierarchical information, it is difficult to see the
skeleton of a PhysiCell model (its substrates and cell types) and visually associate
parameters with their parent objects.

We present PhysiCell Studio, a graphical tool that makes it easier to build, run, and
visualize a PhysiCell model. PhysiCell Studio began as a graphical user interface (GUI) that
focused solely on editing the contents of the XML model. Over time, it has evolved to
include additional functionality. A GUI can provide several benefits over a command line
interface. This is especially true for a simulation framework like PhysiCell, where output
results are visual as the scientist user interactively develops a model – changing
parameters, running a simulation, plotting results, and repeating.

Benefits of using a GUI include: (1) easier to use, since point and click to access and edit
objects and parameters offers an alternative to traditional text editing and is especially
appealing to those who are less experienced developing code; (2) faster prototyping, where
if the tool can also run a simulation and plot results, it can “close the loop”, allowing for
faster model development (and these capabilities can also allow users to skip setting up a
development environment, which can be a barrier to getting started); and (3) reduce input
errors, since a GUI can incorporate validation constraints, such as numeric input or
pre-defined object selection.

PhysiCell Studio now joins other agent-based modeling frameworks that provide some
level of GUIs, such as NetLogo [3], Chaste [4], Morpheus [5], CompuCell3D [6], Artistoo [7],
and more.

PHYSICELL MODELS
Defining a model in PhysiCell has been an evolving process as new functionality has been
added over the past few years. A PhysiCell model currently consists of: (1) an XML
configuration file containing model parameter values; (2) optional files (specified in the
configuration file) that contain additional input data: initial conditions for cells (and in the
future, substrates), and rules defining how cells respond to signals; and (3) optional custom
C++ code. An executable model is the result of compiling the core PhysiCell C++ code
together with any custom C++ code. Several sample models are provided in the PhysiCell
source code distribution.

We show a portion of an XML configuration file in Figure 1. This is taken from one of
PhysiCell’s sample models (“interaction” model). We show just a single “cell_definition” (cell
type) and its phenotype (containing more than 100 actual parameters). Note that for each of
the eight phenotypic behaviors, we have collapsed the actual parameters and their values.
There are seven cell types – “cell_definition” sections – in this particular model, bringing the
total number of parameters for all cell types to more than 700. There will typically be
multiple substrates (signals) defined in a model as well. For example, a COVID-19 PhysiCell
model has 8 cell types and 11 substrates [8] (see: nanohub.org/tools/pc4covid19).

BUILDING A TUMOR MODEL
We demonstrate PhysiCell Studio by showing how one could interactively build, explore,
and iteratively refine a 2D tumor model. As is recommended when starting a PhysiCell
model, we will load an existing “template” model from the sample projects, that is included

Gigabyte, 2024, DOI: 10.46471/gigabyte.128 2/20

https://nanohub.org/tools/pc4covid19
https://doi.org/10.46471/gigabyte.128


R. Heiland et al.

Figure 1. Portion of the XML configuration file showing elements of a cell definition.

with every PhysiCell download. The “template” model defines one cell type (“default”) and
one substrate (“substrate”). In this model, a specific (predefined) cell cycle is defined that
results in proliferation and the cell death parameters result in apoptosis. The other cell
phenotype parameters use defaults provided by PhysiCell: “standard” mechanics, no
motility, no secretion, etc. The substrate has an identically zero initial condition and a
zero-flux (Neumann) boundary condition with no additional Dirichlet boundary conditions.
There is a user parameter, “number_of_cells”, that defines the number of initial cells
positioned randomly and uniformly in the spatial domain.

We start by copying this template (.xml) model into a new file, tumor_demo.xml. There
are a few different workflows for using the Studio. However, the most common way is
discussed in the Studio Guide [9]. Assuming the Studio is installed in a PhysiCell root
directory and you have compiled the template project executable (called “project”), then
you can create the new tumor_demo.xml and run the Studio from the command line with
the following (adjusting the syntax for Windows if necessary, rf. Studio Guide):

∼/PhysiCell$ cp studio/config/template.xml   tumor_demo.xml
∼/PhysiCell$ python studio/bin/studio.py   -c tumor_demo.xml   -e project

(If you need help installing PhysiCell, in order to build the template project, see [10].)
You should see something similar to Figure 2 that displays the first tab for Configuration

Basics parameters for your model (same as the template model). In this tab, you can
configure the size of the domain, set time stepping parameters, set the frequency of
collecting model data, and more [11]. For now, check the “enable” checkbox in the “Initial
conditions of cells” section as we will be using it for the tumor model.

Next, select the “Microenvironment” tab, where the substrates (or signals) are defined. In
the template model, you will see a “substrate” defined. This tab will display all substrates in
the model in the left panel along with buttons to create new substrates, copy substrates, and
delete substrates. On the right, you will see all the available parameters for the highlighted
substrate on the left. In addition, two checkboxes appear at the bottom that change the
behavior of the model for all substrates: “calculate gradients” and “track in agents”.

Perform the following steps to set up oxygen in the model: (i) select “substrate” –
double-click the name – and rename it “oxygen”; (ii) set the “decay rate” to 0.1 (to give a
1 mm O2 diffusion length scale outside the tumor); (iii) set the “initial condition” to 38

Gigabyte, 2024, DOI: 10.46471/gigabyte.128 3/20

https://doi.org/10.46471/gigabyte.128


R. Heiland et al.

Figure 2. View of the basic configuration of a PhysiCell model in PhysiCell Studio.

Figure 3. View of the microenvironment configuration of a PhysiCell model in PhysiCell Studio.

(a 5% physioxic condition); (iv) set the “Dirichlet BC” – Boundary Condition – to 38; and
(v) press “Apply to all” then check the “on” checkbox for xmin, xmax, ymin, and ymax.

Your screen should look like Figure 3.
Next, select the “Cell Types” tab. True to its name, PhysiCell is an agent-based model of

cells, hence the most detail goes into defining the cell types. That is why this tab contains
the most information, organized by nine subtabs. Similar to the “Microenvironment” tab,
the left panel shows the list of current cell types as well as their ID, a non-negative integer

Gigabyte, 2024, DOI: 10.46471/gigabyte.128 4/20

https://doi.org/10.46471/gigabyte.128


R. Heiland et al.

Figure 4. View of the cell cycle definition of a cancer cell in PhysiCell Studio.

Figure 5. View of the secretion configuration of a cancer cell in PhysiCell Studio.

that you only need to account for if you create your own custom C++ code referring directly
to cell type IDs. (See the PhysiCell biorobots sample project: “robot_coloring_function” in
custom_modules/custom.cpp.) On the right, you can cycle through the nine subtabs,
displaying the related information for the highlighted cell type on the left. In the template
model, you will see a “default” cell type defined.

Select “default”, double-click the name, and rename it “cancer”. The “Cycle” tab should
already be selected, but if not, select it. Click the dropdown widget containing predefined
cell cycles and select “live cells” (a simpler cell cycle representation [12, 13]). Be sure the
“duration(s)” radio button is selected and set the “phase 0 duration” to 1440 (min, i.e., 24 h).

Your screen should look like Figure 4.
Staying in the “Cell Types” top tab, select the “Secretion” subtab. Note its dropdown

widget only lists “oxygen” since that’s the only substrate defined so far. In a model with
more substrates, those will automatically be added to this dropdown for you to select and
update the four cell-type-specific parameters shown below.

Set the “uptake rate” to 10. (This corresponds to a 100-micron length scale.)
Your screen should look like Figure 5.
Next, we will create the initial conditions (i.e., the initial cell positions) for the circular

tumor. Select the “ICs” tab. In this tab, initial cell locations can be set using a graphical
interface. Select the cell type from the dropdown widget, use the two dropdown widgets
below to set how you will add cells, fine tune your placement with parameters, and “Plot”
the result. If you choose “point” from the first dropdown, you can click on the figure in the
right panel to add cells at specific locations.

The top “Cell Type” dropdown widget should only contain “cancer”. Be sure
“annulus/disk” is selected in the geometry dropdown. Select “hex fill” in the fill options

Gigabyte, 2024, DOI: 10.46471/gigabyte.128 5/20

https://doi.org/10.46471/gigabyte.128


R. Heiland et al.

Figure 6. View of the definition of cells’ initial conditions of a PhysiCell model in PhysiCell Studio.

Figure 7. Enable cells’ initial conditions on the Config Basics tab.

dropdown. Set R1 (minimum radius) to 0. Set R2 (maximum radius) to 200. Click “Plot”. Click
“Save”.

Your screen should look like Figure 6. After any change to these initial conditions, you
must click “Save”. PhysiCell Studio only saves to the CSV when this button is pressed, not
when you “File→ Save” the XML.

In the “Config Basics” tab, confirm that you have checked “enable” for the initial
conditions (Figure 7). If you do not, these initial conditions will not be loaded into your
simulation.

Next, select the “User Params” tab. You will see a table of user parameters that you can
add to, modify, or delete from. The first three columns of this table are required by
PhysiCell while the final two are for interpretability. Only those user parameters that
display upon initial loading of Studio with the sample project – those that the sample
project’s C++ uses – will affect the simulation. Adding additional user parameters in the
Studio would only make sense if the model’s C++ code uses them.

Set the “number_of_cells” to 0 (so that we only have our hex-packed disk of cells). This
user parameter sets the number of randomly positioned agents (of each cell type) in the
“template” sample project; this is only needed when cell positions aren’t explicitly supplied
as an initial condition as in our example.

Gigabyte, 2024, DOI: 10.46471/gigabyte.128 6/20

https://doi.org/10.46471/gigabyte.128


R. Heiland et al.

Figure 8. View of the definition of user parameters in PhysiCell Studio.

Figure 9. View of the simulation log in PhysiCell Studio.

Your screen should look like Figure 8.
Next, select the “Run” tab and click “Run simulation”. This will cause all edits you have

made so far to be saved into “tumor_demo.xml”. Additionally, PhysiCell Studio uses the
inputs you gave to launch it to populate the executable and configuration files for you. The
simulation will run, showing the normal terminal output in this tab (Figure 9).

While the simulation is running, navigate to the “Plot” tab. In this tab, you can advance
through snapshots of the model as it is running by navigating with the arrows, entering a
specific snapshot ID, or clicking “Play” and watching a movie of the recorded output. For the
best experience, select the “Sync” option on “Config Basics” in the “Save data (intervals)”
row to synchronize the cellular and substrate snapshots. Many options exist for what data
to display, including cell-specific data (pressure, cycle phase, etc.) and individual substrate
concentrations. By clicking the “Legend (.svg)” button, a legend will appear in a new
window identifying the cell types. Clicking the “Population plot” will open a new window
with time series corresponding to the item in the dropdown widget.

Gigabyte, 2024, DOI: 10.46471/gigabyte.128 7/20

https://doi.org/10.46471/gigabyte.128


R. Heiland et al.

Figure 10. Simulation results at 1 h (left) and 2 days, 12 h (right) in PhysiCell Studio.

For now: (i) leave the “cells” checkbox checked and the “.svg” radio button selected;
(ii) check the “substrates” checkbox to plot the diffusing oxygen substrate and choose
“turbo” in the colormap dropdown; and (iii) press the “ >” button to advance a single frame.

Your screen should look similar to Figure 10 (left). If you press the “Play” button, it
should animate results from the simulation. Figure 10 (right) shows results at 2.5 days. Be
aware that results from PhysiCell simulations will be stochastic if you are using more than
one OpenMP thread, so there will be some variability between runs.

We have modeled a growing tumor whose cells uptake oxygen. One thing to note is the
tumor cells overlap in a non-realistic manner. This can be made more obvious if we plot the
tumor cells color-coded by how much pressure is exerted on each one (Figure 11).

To correct this non-realistic outcome, we can define a pressure mechano-feedback rule.
A rule defines a cell behavior as a function of some signal, providing a powerful modeling
feature of PhysiCell [14]. This, along with more extensions to this tumor model, can be
found in the archived ‘Supplementary data’ in Zenodo [15]. (We also provide a living
version of the ‘Supplementary data’ at [16].)

DESIGN AND DEVELOPMENT
PhysiCell Studio has been designed and developed by academic researchers. Graduate
students, as early users, have provided valuable feedback and contributions. In our lab at
Indiana University, we also include undergraduate students in research projects, and this
has definitely been true for the Studio. By combining graduate and undergraduate students
in regular lab meetings, we foster both education and research. Undergraduates learn more
about active research projects (like the Studio and models developed using it); graduate
students, postdocs, and staff become mentors [17].

One key design goal was to have PhysiCell Studio be an independent project from
PhysiCell. By “independent” we mean that, first, it should not affect the legacy workflow for
using PhysiCell. A modeler should still be able to edit the XML model by hand, run a
simulation from the command line, and visualize output results however they wish. Second,
we want the Studio to have an independent development path, likely with more frequent
software releases than PhysiCell. However, the latest version of the Studio should always

Gigabyte, 2024, DOI: 10.46471/gigabyte.128 8/20

https://doi.org/10.46471/gigabyte.128


R. Heiland et al.

Figure 11. Pressure values on cells (at 2 days, 12 h) in PhysiCell Studio.

expose whatever model parameters are available in the latest version of PhysiCell. And
third, it allows for having different software licenses.

The development of PhysiCell Studio has progressed in stages. In the first stage, as part of
a National Science Foundation nanoBIO grant [18], we developed a Python
(RRID:SCR_008394) script and workflow to transform an existing PhysiCell model
configuration file (XML) into a Jupyter notebook with a GUI (Figure 12). Undergraduate
students played an active role during this stage and contributed to the xml2jupyter
project [19]. When the GUI was combined with the PhysiCell C++ code base and custom C++
for that particular model, the model was accessible from a Web browser, parameter values
could be modified, and a simulation executed in the cloud on the nanoHUB platform (e.g.,
nanohub.org/tools/pc4covid19). In addition, 2D simulation results could be visualized in the
same tool. The ability to edit the model, however, was limited to modifying values of
existing parameters. A user could not add more (nor delete, nor rename existing) objects or
parameters in the model using the GUI. Nevertheless, the layout of the GUI during this stage
influenced the layout of PhysiCell Studio.

The second stage of development was to prototype a desktop tool that resembled the
Jupyter notebook’s layout and functionality but was more powerful. It needed to be able to:
(1) add (or delete or rename) objects such as substrates, cell types, custom data parameters,
and user parameters; and (2) define associations between objects, such as cell type C
{secretes, or chemotaxis to/from} substrate S, or cell type C1 {interacts with} cell type C2. All
model edits performed in the Studio would then be saved in the XML configuration file.

We chose Qt [20] as the preferred GUI library for the desktop tool for multiple reasons. It
is used by several other desktop (scientific) applications, runs on the three major operating

Gigabyte, 2024, DOI: 10.46471/gigabyte.128 9/20

https://scicrunch.org/browse/resources/SCR_008394
https://nanohub.org/tools/pc4covid19
https://doi.org/10.46471/gigabyte.128


R. Heiland et al.

Figure 12. Jupyter notebook GUI showing some model parameters (left) and simulation results (right).

systems (Windows, macOS, and Linux) that PhysiCell supports, and has Python Application
Programming Interfaces (APIs). Undergraduate students explored the C++ API to Qt, along
with Qt Designer [21] to create a primitive prototype of the desktop Studio. Others explored
a Python API to Qt [22] to do the same. In the end, we selected the Python API for two
reasons: (1) the development cycle was faster (no compilation required); and (2) we believed
the PhysiCell community (who might further develop the Studio) would be more familiar
with Python than C++. (This was also true for undergraduate and graduate students.)

We made early prototypes of the Studio available to lab members, close collaborators,
and community leaders who attended PhysiCell workshops. Their feedback led to a third
stage of development that included the ability to create cells’ initial conditions (in 2D) and
additional visualization functionality, including cells’ scalar values (in the .mat output files)
and plotting for 3D models (using VTK) [23].

Finally, a fourth stage of development provided a graphical interface to a recent,
powerful modeling concept in PhysiCell: cell behaviors can be interactively defined as
responses to signals (stimuli) [14]. These behaviors are specified using a constrained
grammar, leading to model “rules” (Figure 13). As a modeler adds (or deletes or renames)
substrates or cell types, in their respective tabs, the widgets in the “Rules” tab for signals
and behaviors will be dynamically updated, in addition to any rules already defined and
listed in the table.

One general usability feature of the Studio is worth mentioning. It operates mostly in
“immediate mode”; confirmation of an action is not required. For example, in the Plot tab,
clicking on a widget or changing a text value will, most of the time, cause an immediate,
visible change in the plot window. One exception is the “cmin” or “cmax” value that pertains
to the colorbars. If a user changes either one of these values, they need to press the “Enter”
key (“Return” on Mac) for the plot results to be updated. There is text next to those widgets
as a reminder. The reason for this required action is because it may be an expensive
operation. In other tabs, for example the Cell Types, entering a new value in a text
parameter widget does not require pressing “Enter” for it to be saved (to intermediate data
structures). A related design feature is that we store all XML objects and parameter values
in internal Python dictionaries (the intermediate data structures) during a Studio session.

Gigabyte, 2024, DOI: 10.46471/gigabyte.128 10/20

https://doi.org/10.46471/gigabyte.128


R. Heiland et al.

Figure 13. An example of model rules (see ‘Supplementary data’) in PhysiCell Studio.

The contents of these dictionaries will be written to an XML file when the user explicitly
does a “File→ Save” (or “Save as”) or performs a “Run Simulation” in the Run tab.

GRAPHICS: PLOTTING AND INITIAL CONDITIONS
During the early design of PhysiCell Studio, we had considered creating it as just a model
editor, with no plotting functionality. There were plenty of scientific visualization libraries
and tools, both commercial and open source, that a modeler could use to post-process
results of a PhysiCell simulation, such as MATLAB (RRID:SCR_001622), matplotlib [24],
VTK [23], ParaView, and Simularium [25]. We decided it was worth the effort to include
some degree of interactive visualization within the Studio, offering benefits such as:
(1) avoiding a potential steep learning curve using other plotting tools; (2) avoiding
cognitive context switching between tools; and (3) reducing the time to develop a model
(the edit→run→visualize cycle).

PhysiCell Studio uses the matplotlib library (RRID:SCR_008624) [24] for 2D and VTK
(its Python API, see vtk.org) for 3D visualizations [23] (RRID:SCR_015013). However, a very
limited and targeted subset of functionality from those libraries is used and exposed in the
GUI. Nevertheless, there are plenty of challenges when visualizing any scientific data.
For PhysiCell data, we need to interactively plot possibly hundreds of thousands of cells,
changing position, size, and color (where color is specified in either SVG or scalar values).
In addition, there may be multiple scalar fields representing the microenvironment,
such as oxygen, glucose, chemokine, and interferon, that also need to be interactively
rendered. Therefore, the Studio offers choices for colormaps and an option to clamp its
scalar range.

Gigabyte, 2024, DOI: 10.46471/gigabyte.128 11/20

https://scicrunch.org/browse/resources/SCR_001622
https://scicrunch.org/browse/resources/SCR_008624
https://www.vtk.org
https://scicrunch.org/browse/resources/SCR_015013
https://doi.org/10.46471/gigabyte.128


R. Heiland et al.

Figure 14. 3D plots of the cancer-immune-sample model in PhysiCell Studio. Left: Clipping plane (XY) of a cell
population. Right: Slice planes (XY, YZ, XZ) showing projected substrate concentrations.

There are additional challenges with 3D models and data, requiring, for example, the
need to hide (clip) data or extract 2D subsets (Figure 14). See [26] for more details. The 3D
visualization available in the current version should be considered early prototyping and
will be improved in future versions. The Studio will never meet everyone’s needs for
visualizing simulation data, but we try to provide a sufficient set of options and can expand
it when the community generally agrees they need more.

In addition to plotting output data from a simulation, the Studio can also generate input
data (currently 2D only). Specifically, the “ICs” tab lets a user graphically create initial
conditions for cells. (In the future it will also provide ways to create initial conditions for
substrates.) By selecting a cell type, a geometric region, the type of fill (random or
hexagonal), plus additional parameters, one can generate a .csv file for cells’ initial
conditions. Figure 15 shows a circular region of tumor cells and an outer annulus of
immune cells.

INTRACELLULAR MODELING
PhysiCell Studio will support intracellular modeling. Currently only a boolean intracellular
modeling interface is provided for the PhysiBoSS [27] add-on, allowing settings edits and
specific visualization. See Figure 16. In the future, we will also provide an interface for ODE
intracellular models [28] and be receptive to others the community may want.

SOFTWARE ENGINEERING
We have adopted a software engineering workflow that uses GitHub [29] and takes
advantage of several features it offers: hosting and distributing software, discussing issues,
submitting pull requests, developing code in staged repositories, and automated testing.

Most of our community is already familiar with GitHub, but for those who are not, we
help them learn the basics. For anyone who wants to contribute code to the Studio, we ask
that they fork the repository into their own account, make edits, test (on at least one of the
three supported operating systems), and make pull requests to the development branch of
the Studio repository. Community discussion about bugs (and hopefully proposed solutions)
or new features for the Studio is encouraged via Slack channels and GitHub Issues. (See
Community Support below.)

Gigabyte, 2024, DOI: 10.46471/gigabyte.128 12/20

https://doi.org/10.46471/gigabyte.128


R. Heiland et al.

Figure 15. Creating initial conditions for cells.

Figure 16. Interface for a boolean intracellular model in PhysiCell Studio.

Gigabyte, 2024, DOI: 10.46471/gigabyte.128 13/20

https://doi.org/10.46471/gigabyte.128


R. Heiland et al.

The Studio uses Python logging to capture significant actions that occur during a
modeling session. This log file can then be shared with developers in the event of a fatal
error or unusual behavior.

For automated testing, we use pytest, a very popular tool for Python applications, and
pytest-qt, a pytest plugin for testing Python APIs to Qt applications [30]. We have only
recently begun automated tests but will be adding more as the Studio evolves. Not only is
there a large parameter space in a PhysiCell model, there is also a large “parameter” space
(user-widget actions) that can occur in a Studio session. Automated tests are necessary to
ensure ongoing development of the software does not introduce unwanted results.

BUNDLING AND DISTRIBUTING
The current version of the Studio does not bundle any pre-built PhysiCell executable model,
pre-built library, or C++ code in its distribution. Therefore, a user will still need to download
and build an executable model which can then be used in the Studio’s “Run” tab to run a
simulation. In the future, we will likely provide bundled distributions of the Studio which
will include both a minimal Python distribution and a “template” PhysiCell executable
model.

Since the Studio uses a Python API to Qt, Python is one dependency. Python’s standard
library provides many useful data structures and an efficient XML API module for handling
much of the functionality in the Studio. However, it will also need modules that are not in
the standard library: PyQt5 (GUI) [22], matplotlib [24] and numpy (2D plotting, numerical
computing) [31], scipy (reading .mat files) [32], and VTK (3D plotting) [23]. For PhysiCell
(and Studio)-related workshops and university courses, we typically ask users to install the
free Anaconda Python distribution [33]. Although it is relatively large and provides many
more modules than the Studio needs, experience has shown that users will avoid many
potential problems by using it. In addition, some of those extra Python modules may later
prove to be useful – for example, doing data analysis on PhysiCell output results. However,
we also provide setup files for a more limited set of dependencies if users want to try that
approach [34].

COMMUNITY SUPPORT
The PhysiCell Studio User Guide [35] should help new users get started. For additional
support, see [36]. An introductory video from a recent PhysiCell workshop is available to
view (Figure 17, [37]). More details about defining Rules using the constrained grammar for
cell behaviors can be found in that paper’s supplementary material [14]. We are always
open to new ideas for learning how to use PhysiCell Studio and welcome community
contributions.

INTERFACING TO OTHER TOOLS
PhysiCell Studio will never provide everything that users need. There will always be
additional functionality that modelers want, whether it be something mundane such as
creating a montage of output images for a publication, something computationally
intensive like data analysis on a model’s parameter space exploration, or numerous other
things. To help bridge the gap to other tools, we provide functionality that transforms
output data into other formats. In collaboration with a team at the Allen Institute for Cell
Science, the Studio can generate data (File→ Export→ Simularium) for their
Simularium [38] viewer (simularium.allencell.org/viewer) shown in Figure 18.

Gigabyte, 2024, DOI: 10.46471/gigabyte.128 14/20

https://simularium.allencell.org/viewer
https://doi.org/10.46471/gigabyte.128


R. Heiland et al.

Figure 17. Working with PhysiCell Studio. A video from Session 2 of the PhysiCell Workshop 2023 [37]. https:
//youtu.be/jkbPP1yDzME.

Figure 18. Studio 3D display (left) and the Simularium viewer (running in a web browser) which allows cell types
to be hidden (right).

ParaView (RRID:SCR_002516, paraview.org) is a very popular open-source desktop tool
for scientific visualization. There is no direct interface from PhysiCell Studio to ParaView,
but we provide a customized workflow that lets ParaView render output data from a
PhysiCell simulation. This workflow, along with the necessary Python scripts and example
ParaView state files are provided at [39]. An example is shown in Figure 19.

Gigabyte, 2024, DOI: 10.46471/gigabyte.128 15/20

https://youtu.be/jkbPP1yDzME
https://youtu.be/jkbPP1yDzME
https://scicrunch.org/browse/resources/SCR_002516
https://www.paraview.org/
https://doi.org/10.46471/gigabyte.128


R. Heiland et al.

Figure 19. ParaView rendering of data from the cancer-immune-sample model in PhysiCell Studio.

The trade-offs of providing functionality in the Studio versus using other tools, especially
for visualization, is an ongoing challenge and we strive to maintain a balance. But the
community will need to provide feedback and contributions for additional data format
transformations for other tools.

DISCUSSION
Developing PhysiCell Studio has been a somewhat lengthy, iterative process in an academic
environment where multiple projects required our attention. Developing any GUI has
unique challenges. For the Studio, it tries to: (1) help a user create and maintain a mental
model of interacting objects in a multicellular system (e.g., cells with phenotypic behaviors
and signals in the microenvironment); and (2) manage user expectations of GUI actions
(e.g., clicking a button or selecting an item in a dropdown widget). Although we had had
some past experience developing GUIs for computational science [40–43], we had lacked
formal training in human–computer interaction (HCI) – an entire academic field. We had
also lacked formal user studies during the development of PhysiCell Studio, beyond our
extensive testing in day-to-day, real-world scientific workflows. In spite of these
shortcomings, we believe the end result is an extremely useful tool which seems to be
quite popular, both with seasoned PhysiCell modelers and with new users just learning
PhysiCell.

This paper has presented the desktop tool version of PhysiCell Studio (version 2.34.3, and
PhysiCell 1.13.1). In addition, we provide an interactive version that runs in a web browser
at nanohub.org/tools/pcstudio. (Access requires creating a free nanoHUB account [44].)
Unfortunately, the browser version currently lags behind the desktop version, so there will
be slight differences in the GUI and the functionality. We plan to synchronize their code
bases in the future. In addition, there are interactive PhysiCell training modules that can be
run in the browser [45].

Gigabyte, 2024, DOI: 10.46471/gigabyte.128 16/20

https://nanohub.org/tools/pcstudio
https://doi.org/10.46471/gigabyte.128


R. Heiland et al.

Looking to the future, we are planning to add new features based on community
feedback and contributions. In terms of promoting even broader accessibility, it would be
interesting to explore the Qt speech interface [46] at some point.

SUMMARY
We have presented PhysiCell Studio, an open-source desktop tool that provides a GUI for
building, simulating, and visualizing a PhysiCell model. The Studio has gone through
several iterations of development and benefited from user feedback at several PhysiCell
workshops and university classes. The end result is a transformative tool for developing a
multicellular model, not only for new users, but also for experienced PhysiCell modelers.
The process of designing and developing the Studio has involved both graduate and
undergraduate students, as well as several members in the larger PhysiCell community.

AVAILABILITY OF SOURCE CODE AND REQUIREMENTS
• Project name: PhysiCell Studio
• Project home page: https://github.com/PhysiCell-Tools/PhysiCell-Studio
• Operating system(s): Platform independent
• Programming language: Python
• Other requirements: Six additional Python modules (matplotlib, VTK, numpy, scipy,

PyQt5, and anndata) not included in the Python standard library, but freely available and
supported. 

• License: GNU GPL v3
• RRID:SCR_025311.

DATA AVAILABILITY
Supplementary data (including a detailed continuation of the tumor model walk-thru) are
available in Zenodo [15]. Archives of the software are available in Software Heritage [47].

ABBREVIATIONS
API, Application Programming Interface; GUI, Graphical User Interface; SVG, Scalable
Vector Graphics; XML, eXtensible Markup Language.

DECLARATIONS
Ethics approval and consent to participate
The authors declare that ethical approval was not required for this type of research.

Competing interests
The authors declare they have no competing interests.

Authors’ contributions
Conceptualization: RH, PM; Writing original draft: RH; Writing - review and editing: RH, DB,
BL, GW, JC, HLR, MR, VN, PM; Software: RH, DB, BL, GW, JC, HLR, MR, VN, PM; Funding
acquisition: VN, PM.

Funding
We thank the National Science Foundation (Awards 1720625 and 2303695), the National
Institutes of Health (U01-CA232137-01), and the Jayne Koskinas Ted Giovanis Foundation for

Gigabyte, 2024, DOI: 10.46471/gigabyte.128 17/20

https://github.com/PhysiCell-Tools/PhysiCell-Studio
https://scicrunch.org/browse/resources/SCR_025311
https://doi.org/10.46471/gigabyte.128


R. Heiland et al.

Health and Policy. This work was also supported by the European Commission under the
PerMedCoE project (H2020-ICT-951773) and the Inserm amorçage project.

Acknowledgements
We thank the entire PhysiCell community for providing helpful feedback and contributions
to the Studio, including several undergraduate students over the past few years: Adam
Morrow, Daniel Mishler, Tyler Zhang, Eric Bower, Carlos Juarez, Jay Thilking, Nicholas Goh,
Yuchen Yang, Drew Willis, Kimberly Crèvecoeur, Dylan Taylor, Kali Konstantinopoulos,
Marshal Gress, and Eric Freeman, as well as graduate students: John Metzcar, Elmar
Bucher, Furkan Kurtoglu, Aneequa Sundus, Yafei Wang, Supriya Bidanta, and postdoc
Michael Getz. We also thank Steven Clark, Daniel Mejia, Martin Hunt, and Lynn Zentner for
their support with nanoHUB. Finally, we thank many open-source software communities
for their support: Python, matplotlib, ParaView, VTK, and more.

REFERENCES
1 Metzcar J, Wang Y, Heiland R et al. A review of cell-based computational modeling in cancer biology.

JCO Clin. Cancer Inform., 2019; 3: 1–13. doi:10.1200/CCI.18.00069.

2 Ghaffarizadeh A, Heiland R, Friedman SH et al. PhysiCell: an open-source physics-based cell
simulator for 3-D multicellular systems. PLoS Comput. Biol., 2018; 14: e1005991.
doi:10.1371/journal.pcbi.1005991.

3 Wilensky U. NetLogo. 1999; http://ccl.northwestern.edu/netlogo. Accessed 1 September 2023.

4 Pitt-Francis J, Pathmanathan P, Bernabeu MO et al. Chaste: a test-driven approach to software
development for biological modelling. Comput. Phys. Commun., 2009; 180: 2452–2471.
doi:10.1016/j.cpc.2009.07.019.

5 Starruß J, de Back W, Brusch L et al. Morpheus: a user-friendly modeling environment for multiscale
and multicellular systems biology. Bioinformatics, 2014; 30: 1331–1332.
doi:10.1093/bioinformatics/btt772.

6 Swat MH, Thomas GL, Belmonte JM et al. Multi-scale modeling of tissues using CompuCell3D.
Methods Cell Biol., 2012; 110: 325–366. doi:10.1016/B978-0-12-388403-9.00013-8.

7 Wortel IMN, Textor J. Artistoo, a library to build, share, and explore simulations of cells and tissues in
the web browser. Elife, 2021; 10: e61288. doi:10.7554/eLife.61288.

8 Wang Y, An G, Becker A et al. Rapid community-driven development of a SARS-CoV-2 tissue simulator.
bioRxiv. 2020; https://doi.org/10.1101/2020.04.02.019075.

9 PhysiCell-Tools. PhysiCell Studio guide: installing and running the studio. https://github.com/PhysiCell-
Tools/Studio-Guide/blob/main/README.md#installing-and-running-the-studio.

10 PhysiCell-Tools. PhysiCell Training.
https://github.com/physicell-training/ws2023/blob/main/agenda.md#set-up-physicell.

11 PhysiCell-Tools. PhysiCell Studio Guide: Configuration Basics.
https://github.com/PhysiCell-Tools/Studio-Guide/blob/main/README.md#config-basics.

12 Friedman SH, Anderson ARA, Bortz DM et al. MultiCellDS: a standard and a community for sharing
multicellular data. bioRxiv. 2016; 090696. https://doi.org/10.1101/090696.

13 Juarez EF, Lau R, Friedman SH et al. Quantifying differences in cell line population dynamics using
CellPD. BMC Syst. Biol., 2016; 10: 92. doi:10.1186/s12918-016-0337-5.

14 Johnson JAI, Stein-O’Brien GL, Booth M et al. Digitize your Biology! Modeling multicellular systems
through interpretable cell behavior. bioRxiv. 2023; https://doi.org/10.1101/2023.09.17.557982.

15 Heiland R, Bergman D, Lyons B et al. PhysiCell Studio: a graphical tool to make agent-based modeling
more accessible. Supplementary material. Zenodo [Dataset]. 2024;
https://doi.org/10.5281/zenodo.11116992.

Gigabyte, 2024, DOI: 10.46471/gigabyte.128 18/20

https://doi.org/10.1200/CCI.18.00069
https://doi.org/10.1371/journal.pcbi.1005991
http://ccl.northwestern.edu/netlogo
https://doi.org/10.1016/j.cpc.2009.07.019
https://doi.org/10.1093/bioinformatics/btt772
https://doi.org/10.1016/B978-0-12-388403-9.00013-8
https://doi.org/10.7554/eLife.61288
https://doi.org/10.1101/2020.04.02.019075
https://github.com/PhysiCell-Tools/Studio-Guide/blob/main/README.md#installing-and-running-the-studio
https://github.com/PhysiCell-Tools/Studio-Guide/blob/main/README.md#installing-and-running-the-studio
https://github.com/physicell-training/ws2023/blob/main/agenda.md#set-up-physicell
https://github.com/PhysiCell-Tools/Studio-Guide/blob/main/README.md#config-basics
https://doi.org/10.1101/090696
https://doi.org/10.1186/s12918-016-0337-5
https://doi.org/10.1101/2023.09.17.557982
https://doi.org/10.5281/zenodo.11116992
https://doi.org/10.46471/gigabyte.128


R. Heiland et al.

16 PhysiCell-Training. Supplementary Data: Living Version.
https://github.com/physicell-training/Studio-tumor-model.

17 Madamanchi A, Thomas M, Magana A et al. Supporting computational apprenticeship through
educational and software infrastructure: a case study in a mathematical oncology research lab.
PRIMUS (Terre Ht), 2022; 32(3 Pt 2): 446–467. doi:10.1080/10511970.2021.1881849.

18 nanoBIO NSF grant. https://www.nsf.gov/awardsearch/showAward?AWD_ID=1720625.

19 Heiland R, Mishler D, Zhang T et al. xml2jupyter: mapping parameters between XML and Jupyter
widgets. J. Open-Source Softw., 2019; 4(39): 1408. doi:10.21105/joss.01408.

20 Qt Group. Qt Website. https://www.qt.io/.

21 Qt Group. Qt Designer. https://doc.qt.io/qt-6/qtdesigner-manual.html.

22 Riverbank Computing Limited. PyQt5 v5.15.10. 2023; https://pypi.org/project/PyQt5/.

23 Schroeder W, Martin K, Lorensen B. The Visualization Toolkit. 4th ed., Kitware, 2006; ISBN
978-1-930934-19-1.

24 Hunter JD. Matplotlib: a 2D graphics environment. Comput. Sci. Eng., 2007; 9: 90–95.
doi:10.1109/MCSE.2007.55.

25 Lyons B, Isaac E, Choi NH et al. The simularium viewer: an interactive online tool for sharing
spatiotemporal biological models. Nat. Methods, 2022; 19(5): 513–515. doi:10.1038/s41592-022-01442-1.

26 PhysiCell-Tools. PhysiCell Studio Guide: 3D Plot.
https://github.com/PhysiCell-Tools/Studio-Guide/blob/main/README.md#plot-3d.

27 Ponce-de-Leon M, Montagud A, Noël V et al. PhysiBoSS 2.0: a sustainable integration of stochastic
Boolean and agent-based modelling frameworks. NPJ Syst. Biol. Appl., 2023; 9(1): 54.
doi:10.1038/s41540-023-00314-4.

28 Somogyi ET, Bouteiller JM, Glazier JA et al. libRoadRunner: a high performance SBML simulation
and analysis library. Bioinformatics, 2015; 31(20): 3315–3321. doi:10.1093/bioinformatics/btv363.

29 PhysiCell-Tools. PhysiCell Studio. https://github.com/PhysiCell-Tools/PhysiCell-Studio.

30 Krekel H, Oliveira B, Pfannschmidt R et al. pytest. 2004; https://github.com/pytest-dev/pytest.

31 Harris CR, Millman KJ, van der Walt SJ et al. Array programming with NumPy. Nature, 2020; 585:
357–362. doi:10.1038/s41586-020-2649-2.

32 Virtanen P, Gommers R, Oliphant TE et al. SciPy 1.0: fundamental algorithms for scientific computing
in Python. Nat. Methods, 2020; 17(3): 261–272. doi:10.1038/s41592-019-0686-2.

33 Anaconda Inc. Anaconda Distribution page. https://www.anaconda.com/download.

34 PhysiCell-Tools. PhysiCell Studio Guide: Dependencies. Available:
https://github.com/PhysiCell-Tools/Studio-Guide/blob/main/README.md#dependencies.

35 PhysiCell-Tools. PhysiCell Studio Guide. Available:
https://github.com/PhysiCell-Tools/Studio-Guide/blob/main/README.md.

36 PhysiCell-Tools. PhysiCell Studio Guide: Support. GitHub.
https://github.com/PhysiCell-Tools/Studio-Guide/blob/main/README.md#support.

37 PhysiCell-Tools. PhysiCell Introductory Video. Youtube. https://youtu.be/jkbPP1yDzME.

38 Lyons B, Isaac E, Choi NH et al. The Simularium Viewer: an interactive online tool for sharing
spatiotemporal biological models. Nat. Methods, 2022; 19: 513–515. doi:10.1038/s41592-022-01442-1.

39 PhysiCell Tools: ParaView. https://github.com/PhysiCell-Tools/vis3D/tree/main/ParaView.

40 Armbruster D, Heiland R, Kostelich EJ. kltool: a tool to analyze spatiotemporal complexity. Chaos,
1994; 4: 421–424. doi:10.1063/1.166020.

41 Heiland RW, Baker MP, Tafti DK. Visbench: a framework for remote data visualization and analysis.
In: International Conference on Computational Science. 2001; doi:10.1007/3-540-45718-6_77.

Gigabyte, 2024, DOI: 10.46471/gigabyte.128 19/20

https://github.com/physicell-training/Studio-tumor-model
https://doi.org/10.1080/10511970.2021.1881849
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1720625
https://doi.org/10.21105/joss.01408
https://www.qt.io/
https://doc.qt.io/qt-6/qtdesigner-manual.html
https://pypi.org/project/PyQt5/
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1038/s41592-022-01442-1
https://github.com/PhysiCell-Tools/Studio-Guide/blob/main/README.md#plot-3d
https://doi.org/10.1038/s41540-023-00314-4
https://doi.org/10.1093/bioinformatics/btv363
https://github.com/PhysiCell-Tools/PhysiCell-Studio
https://github.com/pytest-dev/pytest
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2
https://www.anaconda.com/download
https://github.com/PhysiCell-Tools/Studio-Guide/blob/main/README.md#dependencies
https://github.com/PhysiCell-Tools/Studio-Guide/blob/main/README.md
https://github.com/PhysiCell-Tools/Studio-Guide/blob/main/README.md#support
https://youtu.be/jkbPP1yDzME
https://doi.org/10.1038/s41592-022-01442-1
https://github.com/PhysiCell-Tools/vis3D/tree/main/ParaView
https://doi.org/10.1063/1.166020
https://doi.org/10.1007/3-540-45718-6_77
https://doi.org/10.46471/gigabyte.128


R. Heiland et al.

42 Moad AJ, Moad CW, Perry JM et al. NLOPredict: visualization and data analysis software for
nonlinear optics. J. Comput. Chem., 2007; 28: 1996–2002. doi:10.1002/jcc.20706.

43 Heiland R, Shirinifard A, Swat M. Visualizing cells and their connectivity graphs for CompuCell3D. In:
2012 IEEE Symposium on Biological Data Visualization (BioVis). 2012; pp. 85–90.
doi:10.1109/BioVis.2012.6378597.

44 Madhavan K, Zentner L, Farnsworth V et al. nanoHUB.org: cloud-based services for nanoscale
modeling, simulation, and education. Nanotechnol. Rev., 2013; 2: 107–117.
doi:10.1515/ntrev-2012-0043.

45 Sundus A, Kurtoglu F, Konstantinopoulos K et al. PhysiCell training apps: cloud hosted open-source
apps to learn cell-based simulation software. bioRxiv. 2022; https://doi.org/10.1101/2022.06.24.497566.

46 Qt Group. Qt Speech. http://www.qt.io/blog/qt-speech-coming-to-qt-6.4.

47 Heiland R, Bergman D, Lyons B et al. PhysiCell Studio: a graphical tool to make agent-based modeling
more accessible (Version 1). [Computer software]. Software Heritage. 2024;
https://archive.softwareheritage.org/swh:1:snp:1b584862407ac60239bd4f2aa962b868f5d16d87;origin=
https://github.com/PhysiCell-Tools/PhysiCell-Studio.

Gigabyte, 2024, DOI: 10.46471/gigabyte.128 20/20

https://doi.org/10.1002/jcc.20706
https://doi.org/10.1109/BioVis.2012.6378597
https://doi.org/10.1515/ntrev-2012-0043
https://doi.org/10.1101/2022.06.24.497566
http://www.qt.io/blog/qt-speech-coming-to-qt-6.4
https://archive.softwareheritage.org/swh:1:snp:1b584862407ac60239bd4f2aa962b868f5d16d87;origin=https://github.com/PhysiCell-Tools/PhysiCell-Studio
https://archive.softwareheritage.org/swh:1:snp:1b584862407ac60239bd4f2aa962b868f5d16d87;origin=https://github.com/PhysiCell-Tools/PhysiCell-Studio
https://doi.org/10.46471/gigabyte.128

	Introduction and background
	PhysiCell models
	Building a tumor model
	Design and development
	Graphics: plotting and initial conditions
	Intracellular modeling
	Software engineering
	Bundling and distributing
	Community support
	Interfacing to other tools
	Discussion
	Summary
	Availability of source code and requirements
	Data availability
	Abbreviations
	Declarations
	Ethics approval and consent to participate
	Competing interests
	Authors’ contributions
	Funding
	Acknowledgements


